ACS102-5T1 ,AC LINE SWITCHELECTRICAL CHARACTERISTICSFor either positive or negative polarity of pin OUT voltage respect to pi ..
ACS102-5T1-TR ,AC LINE SWITCHFEATURESTO-92n Blocking voltage : V /V = 500VDRM RRMACS102-5TAn Clamping voltage : V = 600 VCLn Nom ..
ACS102-5TA ,AC LINE SWITCHFEATURESTO-92n Blocking voltage : V /V = 500VDRM RRMACS102-5TAn Clamping voltage : V = 600 VCLn Nom ..
ACS102-5TA-TR ,AC LINE SWITCHELECTRICAL CHARACTERISTICSFor either positive or negative polarity of pin OUT voltage respect to pi ..
ACS1026T ,Overvoltage protected AC switchFeaturesG (5)■ Needs no external protection snubber or COM (6)COM (7)varistorNC (4)NC (8)NC (3)■ En ..
ACS102-6T1-TR ,Overvoltage protected AC switchElectrical characteristics (T = 25 °C, unless otherwise specified)jSymbol Test conditions Quadrant ..
AD8031AN ,2.7 V, 800 uA, 80 MHz Rail-to-Rail I/O AmplifiersSPECIFICATIONS(@ T = +258C, V = +5 V, R = 1 kV to +2.5 V, R = 2.5 kV unless otherwise noted)+5 V Su ..
AD8031ANZ ,Rail-to-Rail I/O Amplifiers (Single Amplifier)SPECIFICATIONS(@ T = +258C, V = +5 V, R = 1 kV to +2.5 V, R = 2.5 kV unless otherwise noted)+5 V Su ..
AD8031AR ,2.7 V, 800 uA, 80 MHz Rail-to-Rail I/O AmplifiersSPECIFICATIONS(@ T = +258C, V = +5 V, R = 1 kV to +2.5 V, R = 2.5 kV unless otherwise noted)+5 V Su ..
AD8031AR-REEL ,2.7 V, 800 uA, 80 MHz Rail-to-Rail I/O Amplifierscharacteristics and are specified for +2.7 V,+5 V and – 5 V supplies. The input voltage range can e ..
AD8031ART , 2.7 V, 800 muA, 80 MHz Rail-to-Rail I/O Amplifiers
AD8031ART-R2 ,Rail-to-Rail I/O Amplifiers (Single Amplifier)SPECIFICATIONS +2.7 V Supply (@ T = +258C, V = +2.7 V, R = 1 kV to +1.35 V, R = 2.5 kV unless other ..
ACS102-5T1-ACS102-5TA
AC LINE SWITCH
ACS102-5TxAC LINE SWITCH Blocking voltage: VDRM /VRRM= 500V Clamping voltage: VCL= 600V Nominal current: IT(RMS)= 0.2A Gate triggering current: IGT <5mA Switch integrated driver Triggering currentis sourcedby the gate SO-8 package: drive reference COM connectedto2 coolingpins 3.5 mm creepage distance from pin OUTto other
pins
FEATURESThe ACS102 belongsto the AC line switch family
built around the ASD™ concept. This high perfor-
mance deviceis ableto controlanupto 0.3A load
device.
The ACS™ switch embedsa high voltage clamp-
ing structureto absorb the inductive turnoff energy
anda gate level shifter driverto separate the digital
controller from the main switch.Itis triggered with negative gate current flowingoutof the gate pin.
For further technical information, please referto
AN1172 application note.
DESCRIPTION Needsno external overvoltage protection Enables equipmentto meet IEC61000-4-5&
IEC 335-1 Reduces component countbyupto80% Interfaces directly witha microcontroller Eliminates any stressing gate kick back on
microcontroller Allows straightforward connection of several
ACS™on same cooling pad.
BENEFITS
FUNCTIONAL DIAGRAMASD™ Switch Family AC on-off static switching in appliance &
industrial control systems Driveof low power high inductiveor resistive
loads like relay, valve, solenoid, dispenser pump, fan, micro-motor low power lamp bulb, door lock
MAIN APPLICATIONSASD andACS area trademarksof STMicroelectronics.
ACS102-5Tx
Note1: accordingtotest describedby IEC61000-4-5 standard& Figure3.
ABSOLUTE RATINGS (limiting values)
SWITCH GATE CHARACTERISTICS (maximum values) with 40mm2 copper(ex: 35μm) surface under “com” pins
THERMAL RESISTANCEStbd=tobe defined
ELECTRICAL CHARACTERISTICSFor either positiveor negative polarityof pin OUT voltage respectto pin COM voltage excepted note3*.
ACS102-5TxThe ACS102 deviceis well adaptedto washing machines, dish washers, tumble driers, refrigerators, water
heaters, and cookware.It has been designed especiallyto switchon&off low power loads suchas sole-
noids, valves, relays, dispensers, micro-motors, pumps, fans, door locks, and low power lamps bulbs.
Pin COM: Common drive reference,to connectto the power line neutral
PinG : Switch Gate inputto connectto the digital controller througha resistor
Pin OUT : Switch Output,to connectto the load
This ACS™ switchis triggered witha negative gate current flowing outof the gate pinG.It canbe drivendi-
rectlyby the digital controller througha resistoras shownon the typical application diagram. No protection
device are required between the gate and COM terminals.
The SO-8 version allowsto connect several ACS102 deviceson the same cooling PCB pad whichis the
COM pin. appliance systems, the ACS102 switch intendsto drive low power loadsin full cycle ON/ OFF mode.
The turnoff commutation characteristicsof these loads are describedin Table1.
Thankstoits thermal and turn-off commutation characteristics, the ACS102 switch drivesa load, suchas
door lock, lamp, relay, valve and micro motor,upto 0.2A without any turn-off aid circuit. Switchingoff the
ACS within one full AC line cycle will extendits currentupto 0.3A.
LINE SWITCH BASIC APPLICATION
Table1: Low power load turnoff commutation requirement (230V AC applications).
TYPICAL APPLICATION DIAGRAM
ACS102-5Tx the endof the last conduction half-cycle, the load current reaches the holding current levelIH, and the
ACS™ switch turns off. Becauseof the inductanceLof the load, the current flows through the avalanche
diodeD and decreases linearlyto zero. During this time, the voltage across the switchis limitedto the
clamping voltage VCL.
The energy storedin the inductanceof the load dependson the holding currentIH and the inductance (up10 H);it can reach about20 mJ andis dissipatedin the clamping diode section. The ACS™ switch sus-
tains the turnoff energy, becauseits clamping sectionis designedfor that purpose.
HIGH INDUCTIVE SWITCH-OFF OPERATION
Fig.1: Turn-off operationof the ACS102 switch
withan electro valve: waveformof the gate current
IG, pin OUT current IOUT& voltage VOUT.
Fig.2: ACS102 switch static characteristic.
The ACS102 switchis ableto withstand safely the AC line transient voltages eitherby clamping the low en-
ergy spikesorby breaking over under high energy shocks.
The test circuitof the figure3is representativeof the final ACS™ application andis also usedto stress the
ACS™ switch accordingto the IEC61000-4-5 standard conditions. Thanksto the load, the ACS™ switch
withstands the voltage spikesupto2kV above the peak line voltage.It will break over safely evenon resis-
tive load where the turnon current rateof increaseis highas shownon figure4. Such non repetitive test
canbe done10 timeson each AC line voltage polarity.
LINE TRANSIENT VOLTAGE RUGGEDNESS
Fig.3: Overvoltage ruggedness test circuit for
resistive and inductive loads according to
IEC61000-4-5 standard.= 150Ω,L=5μH, VPP= 2kV.
Fig.4: Current and Voltageof the ACS™ during
IEC61000-4-5 standard test withR=150Ω,L=5μH
&VPP= 2kV.
ACS102-5Tx0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.200.00
P(W)
Fig.5: Maximum power dissipation versus RMS
on-state current. 20 40 60 80 100 120 1400.00
IT(RMS)(A)
Fig. 6: RMS on-state current versus ambient
temperature.
1E-3 1E-2 1E-1 1E+0 1E+1 1E+2 5E+20.01
Zth(j-a) / Rth(j-a)
Fig. 7-1: Relative variationof thermal impedance
junction to ambient versus pulse duration
(ACS102-5TA) (TO-92).
1E-3 1E-2 1E-1 1E+0 1E+1 1E+2 5E+20.01
Zth(j-a) / Rth(j-a)
Fig. 7-2: Relative variationof thermal impedance
junctionto ambient versus pulse duration (printed
circuit board FR4, e(Cu)= 35μm, S(Cu)= 40mm2
under “com” pins) (ACS102-5T1) (SO-8).
-40 -20 0 20 40 60 80 100 120 1400.0
IGT [Tj] / IGT [Tj=25°C]
Fig.8: Relative variationof gate trigger current
versus junction temperature.
-40 -20 0 20 40 60 80 100 120 1400.0
IH,IL [Tj] / IH,IL [Tj=25°C]
Fig.9: Relative variationof holding and latching
current versus junction temperature.
ACS102-5Tx0.01 0.10 1.00 10.000.1
ITSM(A),I²t(A²s)
Fig. 11: Non-repetitive surge peak on-state
current fora sinusoidal pulse with width tp<10ms,
and corresponding valueofI2t..
0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.20.01
ITM(A)
Fig. 12: On-state characteristics (maximum
values). 20 40 60 80 100 120 140 160 180 200 220 2400
Rth(j-a) (°C/W)
Fig. 13: Thermal resistance junctionto ambient
versus copper surface under tab (Epoxy printed
circuit board FR4, copper thickness under “com”
pins: 35μm) (ACS102-5T1). 10 20 30 40 50 60 70 80 90 100 110 1200.0
(dI/dt)c [Tj] / (dI/dt)c [Tj=110°C]
Fig. 14: Relative variationof critical (dI/dt)c versus
junction temperature (ACS102-5T1). 10 100 10000
ITSM(A)
Fig. 10: Surge peak on-state current versus
number of cycles.