![](/IMAGES/ls12.gif)
74LVC3G04DP ,Triple inverterFeatures and benefits Wide supply voltage range from 1.65 V to 5.5 V 5 V tolerant outputs for int ..
74LVC3G07DC ,Triple buffer with open-drain outputFeatures and benefits Wide supply voltage range from 1.65 V to 5.5 V 5 V tolerant input/output fo ..
74LVC3G07DP ,Triple buffer with open-drain outputGeneral descriptionThe 74LVC3G07 provides three non-inverting buffers.The output of the device is a ..
74LVC3G14DC ,Triple inverting Schmitt trigger with 5 V tolerant inputFeatures■ Wide supply voltage range from 1.65 V to 5.5 V■ 5 V tolerant input/output for interfacing ..
74LVC3G14DC ,Triple inverting Schmitt trigger with 5 V tolerant inputGeneral descriptionThe 74LVC3G14 is a high-performance, low-power, low-voltage, Si-gate CMOS device ..
74LVC3G14DP ,Triple inverting Schmitt trigger with 5 V tolerant inputGeneral descriptionThe 74LVC3G14 provides three inverting buffers with Schmitt trigger input. It is ..
82356120100 , 0603 ESD Suppressor
82401646 , TVS Diode Array WE-TVS
824-1 , LAN 10/100 BASE-T Single Port Transformer Modules
82541ER , 82541ER Gigabit Ethernet Controller
8255A , Programmable Peripheral Interface iAPX86 Family
8255A-5 , Programmable Peripheral Interface iAPX86 Family
74LVC3G04DP
Triple inverter
1. General descriptionThe 74LVC3G04 provides three inverting buffers.
Inputs can be driven from either 3.3 Vor5 V devices. This feature allows the use of these
devices as translators in a mixed 3.3 V and5 V environment.
This device is fully specified for partial power-down applications using IOFF. The IOFF
circuitry disables the output, preventing a damaging backflow current through the device
when it is powered down.
2. Features and benefits Wide supply voltage range from 1.65 Vto 5.5V5 V tolerant outputs for interfacing with 5 V logic High noise immunity Complies with JEDEC standard: JESD8-7 (1.65 V to 1.95V) JESD8-5 (2.3 V to 2.7V) JESD8B/JESD36 (2.7 V to 3.6V) ESD protection: HBM JESD22-A114F exceeds 2000V MM JESD22-A115-A exceeds 200V 24 mA output drive (VCC =3.0V) CMOS low power consumption Latch-up performance exceeds 250 mA Direct interface with TTL levels Multiple package options Specified from 40 C to +85 C and 40 C to +125C
74L VC3G04
Triple inverter
Rev. 11 — 2 April 2013 Product data sheet
NXP Semiconductors 74LVC3G04
Triple inverter
3. Ordering information
4. Marking[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.
Table 1. Ordering information74LVC3G04DP 40Cto +125C TSSOP8 plastic thin shrink small outline package; 8 leads;
body width 3 mm; lead length 0.5 mm
SOT505-2
74LVC3G04DC 40Cto +125C VSSOP8 plastic very thin shrink small outline package; 8 leads;
body width 2.3 mm
SOT765-1
74LVC3G04GT 40Cto +125C XSON8 plastic extremely thin small outline package; no leads; terminals; body 1 1.95 0.5 mm
SOT833-1
74LVC3G04GF 40 C to +125 C XSON8 extremely thin small outline package; no leads; terminals; body 1.351 0.5 mm
SOT1089
74LVC3G04GD 40Cto +125C XSON8 plastic extremely thin small outline package; no leads; terminals; body 3 2 0.5 mm
SOT996-2
74LVC3G04GM 40 C to +125C XQFN8 plastic, extremely thin quad flat package; no leads; terminals; body 1.6 1.6 0.5 mm
SOT902-2
74LVC3G04GN 40 C to +125C XSON8 extremely thin small outline package; no leads; terminals; body 1.2 1.0 0.35 mm
SOT1116
74LVC3G04GS 40 C to +125C XSON8 extremely thin small outline package; no leads; terminals; body 1.35 1.0 0.35 mm
SOT1203
Table 2. Marking codes74LVC3G04DP V04
74LVC3G04DC V04
74LVC3G04GT V04
74LVC3G04GF V4
74LVC3G04GD V04
74LVC3G04GM V04
74LVC3G04GN V4
74LVC3G04GS V4
NXP Semiconductors 74LVC3G04
Triple inverter
5. Functional diagram
6. Pinning information
6.1 PinningNXP Semiconductors 74LVC3G04
Triple inverter
6.2 Pin description
7. Functional description[1] H= HIGH voltage level; L= LOW voltage level.
Table 3. Pin description1A, 2A, 3A 1, 3, 6 7, 5, 2 data input
GND 4 4 ground (0 V) , 2Y, 3Y 7, 5, 2 1, 3, 6 data output
VCC 8 8 supply voltage
Table 4. Function table[1]NXP Semiconductors 74LVC3G04
Triple inverter
8. Limiting values[1] The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed.
[2] When VCC=0 V (Power-down mode), the output voltage can be 5.5 V in normal operation.
[3] For TSSOP8 package: above 55 C the value of Ptot derates linearly with 2.5 mW/K.
For VSSOP8 package: above 110 C the value of Ptot derates linearly with 8 mW/K.
For XSON8 and XQFN8 packages: above 118 C the value of Ptot derates linearly with 7.8 mW/K.
9. Recommended operating conditions
Table 5. Limiting valuesIn accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).
VCC supply voltage 0.5 +6.5 V
IIK input clamping current VI < 0 V 50 - mA input voltage [1] 0.5 +6.5 V
IOK output clamping current VO > VCC or VO < 0 V - 50 mA output voltage Active mode [1] 0.5 VCC + 0.5 V
Power-down mode [1][2] 0.5 +6.5 V output current VO = 0 V to VCC - 50 mA
ICC supply current - 100 mA
IGND ground current 100 - mA
Ptot total power dissipation Tamb= 40 C to +125C [3]- 250 mW
Tstg storage temperature 65 +150 C
Table 6. Operating conditionsVCC supply voltage 1.65 5.5 V input voltage 0 5.5 V output voltage Active mode 0 VCC V
Power-down mode; VCC =0V 0 5.5 V
Tamb ambient temperature 40 +125 C
t/V input transition rise and fall rate VCC = 1.65 V to 2.7 V - 20 ns/V
VCC = 2.7 V to 5.5 V - 10 ns/V
NXP Semiconductors 74LVC3G04
Triple inverter
10. Static characteristicsTable 7. Static characteristicsAt recommended operating conditions; voltages are referenced to GND (ground=0V).
Tamb= 40 C to
+85C
VIH HIGH-level input voltage VCC = 1.65 V to 1.95 V 0.65 VCC -- V
VCC = 2.3 V to 2.7 V 1.7 - - V
VCC = 2.7 V to 3.6 V 2.0 - - V
VCC = 4.5 V to 5.5 V 0.7 VCC -- V
VIL LOW-level input voltage VCC = 1.65 V to 1.95 V - - 0.35 VCC V
VCC = 2.3 V to 2.7 V - - 0.7 V
VCC = 2.7 V to 3.6 V - - 0.8 V
VCC = 4.5 V to 5.5 V - - 0.3 VCC V
VOH HIGH-level output voltage VI =VIHorVIL= 100 A; VCC = 1.65 V to 5.5V VCC 0.1 - - V= 4mA; VCC = 1.65V 1.2 - - V= 8mA; VCC = 2.3V 1.9 - - V= 12 mA; VCC = 2.7 V 2.2 - - V= 24 mA; VCC = 3.0 V 2.3 - - V= 32 mA; VCC = 4.5 V 3.8 - - V
VOL LOW-level output voltage VI =VIHorVIL =100 A; VCC = 1.65 V to 5.5 V - - 0.10 V =4mA; VCC = 1.65V - - 0.45 V =8mA; VCC = 2.3V - - 0.30 V =12mA; VCC = 2.7 V - - 0.40 V =24mA; VCC = 3.0 V - - 0.55 V =32mA; VCC = 4.5 V - - 0.55 V input leakage current VI= 5.5Vor GND; VCC =0Vto5.5V - 0.1 5 A
IOFF power-off leakage current VCC = 0 V; VIorVO =5.5V - 0.1 10 A
ICC supply current VI= 5.5Vor GND;
VCC =1.65Vto5.5V; IO =0A
-0.1 10 A
ICC additional supply current per pin; VCC = 2.3 V to 5.5 V; =VCC 0.6 V; IO =0 A 500 A input capacitance VCC= 3.3 V; VI = GND to VCC -2.5 - pF
NXP Semiconductors 74LVC3G04
Triple inverter[1] All typical values are measured at VCC=3.3 V and Tamb =25C.
Tamb= 40 C to
+125C
VIH HIGH-level input voltage VCC = 1.65 V to 1.95 V 0.65 VCC -- V
VCC = 2.3 V to 2.7 V 1.7 - - V
VCC = 2.7 V to 3.6 V 2.0 - - V
VCC = 4.5 V to 5.5 V 0.7 VCC -- V
VIL LOW-level input voltage VCC = 1.65 V to 1.95 V - - 0.35 VCC V
VCC = 2.3 V to 2.7 V - - 0.7 V
VCC = 2.7 V to 3.6 V - - 0.8 V
VCC = 4.5 V to 5.5 V - - 0.3 VCC V
VOH HIGH-level output voltage VI =VIHorVIL= 100 A; VCC = 1.65 V to 5.5V VCC 0.1 - - V= 4mA; VCC = 1.65V 0.95 - - V= 8mA; VCC = 2.3V 1.7 - - V= 12 mA; VCC = 2.7 V 1.9 - - V= 24 mA; VCC = 3.0 V 2.0 - - V= 32 mA; VCC = 4.5 V 3.4 - - V
VOL LOW-level output voltage VI =VIHorVIL =100 A; VCC = 1.65 V to 5.5 V - - 0.10 V =4mA; VCC = 1.65V - - 0.70 V =8mA; VCC = 2.3V - - 0.45 V =12mA; VCC = 2.7 V - - 0.60 V =24mA; VCC = 3.0 V - - 0.80 V =32mA; VCC = 4.5 V - - 0.80 V input leakage current VI= 5.5Vor GND; VCC =0Vto5.5V - - 20 A
IOFF power-off leakage current VCC = 0 V; VIorVO =5.5V - - 20 A
ICC supply current VI= 5.5Vor GND;
VCC =1.65Vto5.5V; IO =0A 40 A
ICC additional supply current per pin; VCC = 2.3 V to 5.5 V; =VCC 0.6 V; IO =0 A - 5000 A
Table 7. Static characteristics …continuedAt recommended operating conditions; voltages are referenced to GND (ground=0V).
NXP Semiconductors 74LVC3G04
Triple inverter
11. Dynamic characteristics[1] Typical values are measured at Tamb =25 C and VCC = 1.8 V, 2.5 V, 2.7 V, 3.3 V and 5.0 V respectively.
[2] tpd is the same as tPLH and tPHL.
[3] CPD is used to determine the dynamic power dissipation (PDin W). =CPD VCC2fi N+ (CL VCC2fo) where:= input frequency in MHz;= output frequency in MHz;= output load capacitance inpF;
VCC= supply voltage in V;= number of inputs switching;
(CL VCC2fo)= sum of outputs.
12. Waveforms
Table 8. Dynamic characteristicsVoltages are referenced to GND (ground=0 V); for test circuit see Figure9.
tpd propagation delay nA to nY; see Figure8 [2]
VCC= 1.65 V to 1.95V 1.0 3.5 8.0 1.0 9.5 ns
VCC= 2.3 V to 2.7V 0.5 2.2 4.4 0.5 5.4 ns
VCC= 2.7V 0.5 2.7 5.2 0.5 7.0 ns
VCC= 3.0 V to 3.6V 0.5 2.7 4.1 0.5 5.5 ns
VCC= 4.5 V to 5.5V 0.5 1.9 3.2 0.5 3.8 ns
CPD power dissipation
capacitance
VI = GND to VCC; VCC= 3.3 V [3] - 13.5 - - - pF
NXP Semiconductors 74LVC3G04
Triple inverter
Table 9. Measurement points1.65 V to 1.95V 0.5 VCC 0.5 VCC
2.3 V to 2.7V 0.5 VCC 0.5 VCC
2.7V 1.5V 1.5V
3.0V to 3.6V 1.5V 1.5V
4.5 V to 5.5V 0.5 VCC 0.5 VCC
Table 10. Test data1.65 V to 1.95V VCC 2.0ns 30pF 1k open
2.3 V to 2.7V VCC 2.0ns 30pF 500 open
2.7V 2.7V 2.5ns 50pF 500 open
3.0V to 3.6V 2.7V 2.5ns 50pF 500 open
4.5 V to 5.5V VCC 2.5ns 50pF 500 open
NXP Semiconductors 74LVC3G04
Triple inverter
13. Package outlineNXP Semiconductors 74LVC3G04
Triple inverter