![](/IMAGES/ls12.gif)
74LVC2G14GW ,Dual inverting Schmitt trigger with 5 V tolerant inputFeatures and benefits Wide supply voltage range from 1.65 V to 5.5 V 5 V tolerant inputs for inte ..
74LVC2G157DCURE4 ,Single 2-Line to 1-Line Data Selector/Multiplexer 8-VSSOP -40 to 85Maximum Ratings(1)over operating free-air temperature range (unless otherwise noted)MIN MAX UNITV S ..
74LVC2G17DW-7 , DUAL SCHMITT TRIGGER BUFFER
74LVC2G17FW4-7 , DUAL SCHMITT TRIGGER BUFFER
74LVC2G17FW4-7 , DUAL SCHMITT TRIGGER BUFFER
74LVC2G17GM ,Dual non-inverting Schmitt-trigger with 5 V tolerant input
8209-6009 , 3M D Sub Plug Plug Connector
8209-6009 , 3M D Sub Plug Plug Connector
82103C , Miniature Surface Mount Power Inductors
82107 ,IR Receiver Modules for Remote Control SystemsRev. 5, 15-Oct-2002 3T ,T – Output Pulse Width ( ms )E / E – Rel. Responsivity ..
82107 ,IR Receiver Modules for Remote Control SystemsRev. 5, 15-Oct-2002 1CircuitTSOP22..YA1VISHAYVishay SemiconductorsParameter Test condition Symbol V ..
82356120100 , 0603 ESD Suppressor
74LVC2G14GW
Dual inverting Schmitt trigger with 5 V tolerant input
1. General descriptionThe 74LVC2G14 provides two inverting buffers with Schmitt-trigger input. It is capable of
transforming slowly changing input signals into sharply defined, jitter-free output signals.
The inputs can be driven from either 3.3Vor5 V devices. This feature allows the use of
this device in a mixed 3.3V and5 V environment. Schmitt-trigger action at the inputs
makes the circuit tolerant of slower input rise and fall time. This device is fully specified for
partial power-down applications using IOFF. The IOFF circuitry disables the output,
preventing the damaging backflow current through the device when it is powered down.
2. Features and benefits Wide supply voltage range from 1.65Vto 5.5V5 V tolerant inputs for interfacing with 5 V logic High noise immunity Complies with JEDEC standard: JESD8-7 (1.65 V to 1.95V) JESD8-5 (2.3 V to 2.7V) JESD8B/JESD36 (2.7 V to 3.6V) ESD protection: HBM JESD22-A114F exceeds 2000V MM JESD22-A115-A exceeds 200V 24 mA output drive (VCC =3.0V) CMOS low power consumption Latch-up performance exceeds 250 mA Direct interface with TTL levels Unlimited rise and fall times Input accepts voltages up to 5V Multiple package options Specified from 40 Cto+85 C and 40 Cto+125 C.
3. Applications Wave and pulse shaper Astable multivibrator Monostable multivibrator
74L VC2G14
Dual inverting Schmitt trigger with 5 V tolerant input
Rev. 7 — 30 November 2011 Product data sheet
NXP Semiconductors 74LVC2G14
Dual inverting Schmitt trigger with 5 V tolerant input
4. Ordering information
5. Marking[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.
6. Functional diagram
Table 1. Ordering information74LVC2G14GW 40 Cto+125C SC-88 plastic surface-mounted package; 6 leads SOT363
74LVC2G14GV 40 Cto+125C TSOP6 plastic surface-mounted package (TSOP6); 6 leads SOT457
74LVC2G14GM 40 Cto+125C XSON6 plastic extremely thin small outline package; leads; 6 terminals; body 1 1.45 0.5 mm
SOT886
74LVC2G14GF 40 C to +125 C XSON6 plastic extremely thin small outline package; leads; 6 terminals; body 11 0.5 mm
SOT891
74LVC2G14GN 40 C to +125C XSON6 extremely thin small outline package; no leads; terminals; body 0.9 1.0 0.35 mm
SOT1115
74LVC2G14GS 40 C to +125C XSON6 extremely thin small outline package; no leads; terminals; body 1.0 1.0 0.35 mm
SOT1202
Table 2. Marking codes74LVC2G14GW VK
74LVC2G14GV V14
74LVC2G14GM VK
74LVC2G14GF VK
74LVC2G14GN VK
74LVC2G14GS VK
NXP Semiconductors 74LVC2G14
Dual inverting Schmitt trigger with 5 V tolerant input
7. Pinning information
7.1 Pinning
7.2 Pin description
8. Functional description[1] H= HIGH voltage level;= LOW voltage level.
Table 3. Pin description 1 data input
GND 2 ground (0V) 3 data input 4 data output
VCC 5 supply voltage 6 data input
Table 4. Function table[1]NXP Semiconductors 74LVC2G14
Dual inverting Schmitt trigger with 5 V tolerant input
9. Limiting values[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
[2] When VCC=0 V (Power-down mode), the output voltage can be 5.5 V in normal operation.
[3] For SC-88 and TSOP6 packages: above 87.5 C the value of Ptot derates linearly with 4.0 mW/K.
For XSON6 packages: above 118 C the value of Ptot derates linearly with 7.8 mW/K.
10. Recommended operating conditions
Table 5. Limiting valuesIn accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).
VCC supply voltage 0.5 +6.5 V
IIK input clamping current VI < 0 V 50 - mA input voltage [1] 0.5 +6.5 V
IOK output clamping current VO > VCC or VO < 0 V - 50 mA output voltage Active mode [1][2] 0.5 VCC + 0.5 V
Power-down mode [1][2] 0.5 +6.5 V output current VO = 0 V to VCC - 50 mA
ICC supply current - 100 mA
IGND ground current 100 - mA
Ptot total power dissipation Tamb= 40 C to +125C [3]- 250 mW
Tstg storage temperature 65 +150 C
Table 6. Recommended operating conditionsVCC supply voltage 1.65 - 5.5 V input voltage 0 - 5.5 V output voltage Active mode 0 - VCC V
Power-down mode; VCC =0V 0 - 5.5 V
Tamb ambient temperature 40 - +125 C
NXP Semiconductors 74LVC2G14
Dual inverting Schmitt trigger with 5 V tolerant input
11. Static characteristicsTable 7. Static characteristicsAt recommended operating conditions; voltages are referenced to GND (ground=0V).
Tamb = 40 C to +85C
VOH HIGH-level output voltage VI = VT+ or VT
IO = 100 A; VCC = 1.65 V to 5.5 V VCC 0.1- - V
IO = 4 mA; VCC = 1.65 V 1.2 - - V
IO = 8 mA; VCC = 2.3 V 1.9 - - V
IO = 12 mA; VCC = 2.7 V 2.2 - - V
IO = 24 mA; VCC = 3.0 V 2.3 - - V
IO = 32 mA; VCC = 4.5 V 3.8 - - V
VOL LOW-level output voltage VI = VT+ or VT
IO = 100 A; VCC = 1.65 V to 5.5 V - - 0.1 V
IO = 4 mA; VCC = 1.65 V - - 0.45 V
IO = 8 mA; VCC = 2.3 V - - 0.3 V
IO = 12 mA; VCC = 2.7 V - - 0.4 V
IO = 24 mA; VCC = 3.0 V - - 0.55 V
IO = 32 mA; VCC = 4.5 V - - 0.55 V input leakage current VI= 5.5Vor GND; VCC =0Vto5.5V - 0.1 5 A
IOFF power-off leakage current VI or VO = 5.5 V; VCC = 0 V - 0.1 10 A
ICC supply current VI= 5.5Vor GND;
VCC= 1.65Vto 5.5 V; IO =0A
-0.1 10 A
ICC additional supply current VI = VCC 0.6 V; IO = 0A;
VCC= 2.3Vto 5.5 V 500 A input capacitance VCC= 3.3 V; VI = GND to VCC -3.5 -pF
Tamb = 40 C to +125C
VOH HIGH-level output voltage VI = VT+ or VT
IO = 100 A; VCC = 1.65 V to 5.5 V VCC 0.1- - V
IO = 4 mA; VCC = 1.65 V 0.95 - - V
IO = 8 mA; VCC = 2.3 V 1.7 - - V
IO = 12 mA; VCC = 2.7 V 1.9 - - V
IO = 24 mA; VCC = 3.0 V 2.0 - - V
IO = 32 mA; VCC = 4.5 V 3.4 - - V
VOL LOW-level output voltage VI = VT+ or VT
IO = 100 A; VCC = 1.65 V to 5.5 V - - 0.1 V
IO = 4 mA; VCC = 1.65 V - - 0.7 V
IO = 8 mA; VCC = 2.3 V - - 0.45 V
IO = 12 mA; VCC = 2.7 V - - 0.6 V
IO = 24 mA; VCC = 3.0 V - - 0.8 V
IO = 32 mA; VCC = 4.5 V - - 0.8 V input leakage current VI= 5.5Vor GND; VCC =0Vto5.5V - - 20 A
NXP Semiconductors 74LVC2G14
Dual inverting Schmitt trigger with 5 V tolerant input[1] All typical values are measured at maximum VCC and Tamb = 25 C.
[1] All typical values are measured at Tamb = 25 C
IOFF power-off leakage current VI or VO = 5.5 V; VCC = 0 V - - 20 A
ICC supply current VI= 5.5Vor GND;
VCC= 1.65Vto 5.5 V; IO =0A 40 A
ICC additional supply current VI = VCC 0.6 V; IO = 0A;
VCC= 2.3Vto 5.5 V - 5000 A
Table 7. Static characteristics …continuedAt recommended operating conditions; voltages are referenced to GND (ground=0V).
Table 8. Transfer characteristicsVoltages are referenced to GND (ground=0 V; for test circuit see Figure8
VT+ positive-going
threshold voltage
see Figure 9 and Figure10
VCC = 1.8 V 0.70 1.10 1.50 0.70 1.70 V
VCC = 2.3 V 1.00 1.40 1.80 1.00 2.00 V
VCC = 3.0 V 1.30 1.76 2.20 1.30 2.40 V
VCC = 4.5 V 1.90 2.47 3.10 1.90 3.30 V
VCC = 5.5 V 2.20 2.91 3.60 2.20 3.80 V
VT negative-going
threshold voltage
see Figure 9 and Figure10
VCC = 1.8 V 0.25 0.61 0.90 0.25 1.10 V
VCC = 2.3 V 0.40 0.80 1.15 0.40 1.35 V
VCC = 3.0 V 0.60 1.04 1.50 0.60 1.70 V
VCC = 4.5 V 1.00 1.55 2.00 1.00 2.20 V
VCC = 5.5 V 1.20 1.86 2.30 1.20 2.50 V hysteresis voltage (VT+ VT); see Figure9,
Figure 10 and Figure11
VCC = 1.8 V 0.15 0.49 1.00 0.15 1.20 V
VCC = 2.3 V 0.25 0.60 1.10 0.25 1.30 V
VCC = 3.0 V 0.40 0.73 1.20 0.40 1.40 V
VCC = 4.5 V 0.60 0.92 1.50 0.60 1.70 V
VCC = 5.5 V 0.70 1.02 1.70 0.70 1.90 V
NXP Semiconductors 74LVC2G14
Dual inverting Schmitt trigger with 5 V tolerant input
12. Dynamic characteristics[1] Typical values are measured at Tamb =25 C and VCC = 1.8 V, 2.5 V, 2.7 V, 3.3 V and 5.0 V respectively.
[2] tpd is the same as tPLH and tPHL.
[3] CPD is used to determine the dynamic power dissipation (PDin W). =CPD VCC2fi N+ (CL VCC2fo) where:= input frequency in MHz;= output frequency in MHz;= output load capacitance inpF;
VCC= supply voltage in V;= number of inputs switching;
(CL VCC2fo)= sum of outputs.
13. Waveforms
Table 9. Dynamic characteristicsVoltages are referenced to GND (ground=0 V). For test circuit see Figure8.
tpd propagation delay nA to nY; see Figure7 [2]
VCC= 1.65 V to 1.95V 1.0 5.6 11.0 1.0 12.0 ns
VCC= 2.3 V to 2.7V 0.5 3.7 6.5 0.5 7.2 ns
VCC= 2.7V 0.5 4.1 7.0 0.5 7.7 ns
VCC= 3.0 V to 3.6V 0.5 3.9 6.0 0.5 6.7 ns
VCC= 4.5 V to 5.5V 0.5 2.7 4.3 0.5 4.7 ns
CPD power dissipation
capacitance
VI = GND to VCC; VCC= 3.3 V [3] - 18.1 - - - pF
NXP Semiconductors 74LVC2G14
Dual inverting Schmitt trigger with 5 V tolerant input
Table 10. Measurement points1.65 V to 1.95V 0.5 VCC 0.5 VCC
2.3 V to 2.7V 0.5 VCC 0.5 VCC
2.7V 1.5V 1.5V
3.0V to 3.6V 1.5V 1.5V
4.5 V to 5.5V 0.5 VCC 0.5 VCC
Table 11. Test data1.65 V to 1.95V VCC 2.0ns 30pF 1k open
2.3 V to 2.7V VCC 2.0ns 30pF 500 open
2.7V 2.7V 2.5ns 50pF 500 open
3.0V to 3.6V 2.7V 2.5ns 50pF 500 open
4.5 V to 5.5V VCC 2.5ns 50pF 500 open
NXP Semiconductors 74LVC2G14
Dual inverting Schmitt trigger with 5 V tolerant input
14. Waveforms transfer characteristicsNXP Semiconductors 74LVC2G14
Dual inverting Schmitt trigger with 5 V tolerant input
15. Application informationThe slow input rise and fall times cause additional power dissipation, which can be
calculated using the following formula:
Padd =fi(tr ICC(AV) +tf ICC(AV)) VCC where:
Padd= additional power dissipation (W);= input frequency (MHz);= input rise time (ns); 10%to90%;= input fall time (ns); 90%to10 %;
ICC(AV)= average additional supply current (A).
ICC(AV) differs with positive or negative input transitions, as shown in Figure 12.
An example of a relaxation circuit using the 74LVC2G14 is shown in Figure 13.