IC Phoenix
 
Home ›  7723 > 74LVC1GX04GV-74LVC1GX04GW,X-tal driver
74LVC1GX04GV-74LVC1GX04GW Fast Delivery,Good Price
Part Number:
If you need More Quantity or Better Price,Welcom Any inquiry.
We available via phone +865332716050 Email
Partno Mfg Dc Qty AvailableDescript
74LVC1GX04GVNXPN/a3000avaiX-tal driver
74LVC1GX04GWNXP/PHILIPSN/a3000avaiX-tal driver


74LVC1GX04GV ,X-tal driverFeatures and benefits Wide supply voltage range from 1.65 V to 5.5 V 5 V tolerant input and a 5 V ..
74LVC1GX04GW ,X-tal driverapplications. The integration of the two devices into the 74LVC1GX04 produces the benefits of a com ..
74LVC2244A ,3-state
74LVC2244A ,3-state
74LVC2244ABQ ,Octal buffer/line driver; 30 惟 series termination; 5 V tolerant input/output; 3-stateFeatures and benefits 5 V tolerant inputs/outputs, for interfacing with 5 V logic Wide supply vol ..
74LVC2244ADB ,Octal buffer/line driver with 30 ohm series termination resistors; 5 V input/output tolerant; 3-stateFEATURES DESCRIPTION• 5 V tolerant inputs/outputs for interfacing with 5 V logic The 74LVC2244A is ..
8155H-2 , 2048-BIT STATIC HMOS RAM WITH I/O PORTS AND TIMER
8169 ,DIGITAL AUDIO PROCESSOR WITH MULTICHANNEL DDX⑩applications with commercial audio D/A converters. The output sampling frequency is fixed at 48 kHz ..
8-188275-4 , AMP Micro-Match Miniature Connector System
81C55 ,2048-Bit CMOS STATIC RAM WITH I/O PORTS AND TIMER
81C55 ,2048-Bit CMOS STATIC RAM WITH I/O PORTS AND TIMER
81CNQ035ASL ,35V 80A Schottky Common Cathode Diode in a D61-8-SL packageFeaturesThe 81CNQ...A center tap Schottky rectifier module series hasbeen optimized for low reverse ..


74LVC1GX04GV-74LVC1GX04GW
X-tal driver
1. General description
The 74LVC1GX04 combines the functions of the 74LVC1GU04 and 74LVC1G04 to
provide a device optimized for use in crystal oscillator applications.
The integration of the two devices into the 74LVC1GX04 produces the benefits of a
compact footprint. It provides lower power dissipation and stable operation over a wide
frequency and temperature range.
Inputs can be driven from either 3.3 Vor5 V devices. This feature allows the use of this
device in a mixed 3.3 V and5 V environment.
This device is fully specified for partial power-down applications using IOFF.
The IOFF circuitry disables the output, preventing the damaging backflow current through
the device when it is powered down.
2. Features and benefits
Wide supply voltage range from 1.65 V to 5.5V5 V tolerant input and a 5 V overvoltage tolerant powered down output High noise immunity Complies with JEDEC standard: JESD8-7 (1.65 V to 1.95V) JESD8-5 (2.3 V to 2.7V) JESD8B/JESD36 (2.7 V to 3.6V) ESD protection: HBM JESD22-A114F exceeds 2000V MM JESD22-A115-A exceeds 200V 24 mA output drive (VCC =3.0V) CMOS low power consumption Latch-up performance exceeds 250 mA Direct interface with TTL levels Multiple package options Specified from 40 C to +85 C and 40 C to +125C
74L VC1GX04
X-tal driver
Rev. 3 — 21 August 2013 Product data sheet
NXP Semiconductors 74LVC1GX04
X-tal driver
3. Ordering information

4. Marking

[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.
5. Functional diagram

Table 1. Ordering information

74LVC1GX04GW 40 C to +125C SC-88 plastic surface-mounted package; 6 leads SOT363
74LVC1GX04GV 40 C to +125C SC-74 plastic surface-mounted package (TSOP6); 6 leads SOT457
Table 2. Marking

74LVC1GX04GW VX
74LVC1GX04GV VX4
NXP Semiconductors 74LVC1GX04
X-tal driver
6. Pinning information
6.1 Pinning

6.2 Pin description

7. Functional description

[1] H= HIGH voltage level;= LOW voltage level.
Table 3. Pin description

n.c. 1 not connected
GND 2 ground (0V) 3 data input 4 data output
VCC 5 supply voltage 6 data output
Table 4. Function table[1]
H L
NXP Semiconductors 74LVC1GX04
X-tal driver
8. Limiting values

[1] The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed.
[2] When VCC=0 V (Power-down mode), the output voltage can be 5.5 V in normal operation.
[3] Above 87.5 C the value of Ptot derates linearly with 4.0 mW/K.
9. Recommended operating conditions

[1] For use of a regular crystal oscillator, the recommended minimum VCC should be 2.0 V.
[2] Only for output Y.
Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).
VCC supply voltage 0.5 +6.5 V
IIK input clamping current VI <0V 50 - mA input voltage [1] 0.5 +6.5 V
IOK output clamping current VO >VCC or VO <0V - 50 mA output voltage Active mode [1][2] 0.5 VCC + 0.5 V
Power-down mode [1][2] 0.5 +6.5 V output current VO =0VtoVCC - 50 mA
ICC supply current - 100 mA
IGND ground current 100 - mA
Tstg storage temperature 65 +150 C
Ptot total power dissipation Tamb= 40 Cto+125C [3] -250 mW
Table 6. Recommended operating conditions

VCC supply voltage [1] 1.65 - 5.5 V input voltage 0 - 5.5 V output voltage Active mode [2] 0- VCC V
Power-down mode; VCC =0V 0 - 5.5 V
Tamb ambient temperature 40 - +125 C
t/V input transition rise and fall rate VCC = 1.65 V to 2.7 V - - 20 ns/V
VCC = 2.7 V to 5.5 V - - 10 ns/V
NXP Semiconductors 74LVC1GX04
X-tal driver
10. Static characteristics
Table 7. Static characteristics
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
Tamb=
40 Cto+85C
VIH HIGH-level input voltage VCC = 1.65 V to 5.5 V 0.75  VCC -- V
VIL LOW-level input voltage VCC = 1.65 V to 5.5 V - - 0.25  VCCV
VOL LOW-level output voltage VI = VIH or VIL= 100 A; VCC = 1.65 Vto 5.5 V - - 0.1 V =4 mA; VCC = 1.65 V - - 0.45 V =8 mA; VCC = 2.3 V - - 0.3 V =12 mA; VCC = 2.7 V - - 0.4 V =24 mA; VCC = 3.0 V - - 0.55 V =32 mA; VCC = 4.5 V - - 0.55 V
VOH HIGH-level output
voltage
VI = VIH or VIL= 100 A; VCC = 1.65 Vto 5.5 V VCC 0.1 - - V= 4mA; VCC = 1.65 V 1.2 - - V= 8mA; VCC = 2.3 V 1.9 - - V= 12 mA; VCC = 2.7 V 2.2 - - V= 24 mA; VCC = 3.0 V 2.3 - - V= 32 mA; VCC = 4.5 V 3.8 - - V input leakage current VCC = 0 V to 5.5 V; VI =5.5V orGND - 0.1 5 A
IOFF power-off leakage currentVIorVO =5.5 V; VCC = 0 V [2]- 0.1 10 A
ICC supply current VCC= 1.65 V to 5.5 V; IO =0A; VI =5.5
Vor GND;
-0.1 10 A input capacitance - 5.0 - pF
Tamb=
40Cto +125C
VIH HIGH-level input voltage VCC = 1.65 V to 5.5 V 0.8  VCC -- V
VIL LOW-level input voltage VCC = 1.65 V to 5.5 V - - 0.2  VCC V
VOL LOW-level output voltage VI = VIH or VIL= 100 A; VCC = 1.65 Vto 5.5 V - - 0.1 V =4 mA; VCC = 1.65 V - - 0.7 V =8 mA; VCC = 2.3 V - - 0.45 V =12 mA; VCC = 2.7 V - - 0.6 V =24 mA; VCC = 3.0 V - - 0.8 V =32 mA; VCC = 4.5 V - - 0.8 V
NXP Semiconductors 74LVC1GX04
X-tal driver

[1] Typical values are measured at maximum VCC and Tamb= 25 C.
[2] VO only for output Y.
VOH HIGH-level output
voltage
VI = VIH or VIL= 100 A; VCC = 1.65 Vto 5.5 V VCC 0.1 - - V= 4mA; VCC = 1.65 V 0.95 - - V= 8mA; VCC = 2.3 V 1.7 - - V= 12 mA; VCC = 2.7 V 1.9 - - V= 24 mA; VCC = 3.0 V 2.0 - - V= 32 mA; VCC = 4.5 V 3.4 - - V input leakage current VCC = 0 V to 5.5 V; VI= 5.5Vor GND; - - 20 A
IOFF power-off leakage currentVIorVO =5.5 V; VCC = 0 V [2] -- 20 A
ICC supply current VCC= 1.65 V to 5.5 V; IO =0A; VI =5.5
Vor GND; 40 A
Table 7. Static characteristics …continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
NXP Semiconductors 74LVC1GX04
X-tal driver
11. Dynamic characteristics

[1] Typical values are measured at nominal VCC and at Tamb= 25 C.
[2] tpd is the same as tPLH and tPHL
[3] CPD is used to determine the dynamic power dissipation (PD in W).
PD = CPD  VCC 2  fi  N + (CL  VCC 2  fo) where:
fi = input frequency in MHz;
fo = output frequency in MHz;
CL = output load capacitance in pF;
VCC = supply voltage in V;
N = number of inputs switching;
(CL  VCC 2  fo) = sum of outputs.
12. Waveforms

Table 8. Dynamic characteristics

Voltages are referenced to GND (ground=0 V); for test circuit, see Figure5.
tpd propagation delay X1to X2; see Figure3 [2]
VCC = 1.65 Vto 1.95 V 0.5 2.1 5.0 0.5 6.5 ns
VCC = 2.3 V to 2.7 V 0.3 1.7 4.0 0.3 5.0 ns
VCC = 2.7 V 0.3 2.5 4.5 0.3 5.6 ns
VCC = 3.0 Vto 3.6 V 0.3 2.1 3.7 0.3 4.5 ns
VCC = 4.5 Vto 5.5 V 0.3 1.6 3.0 0.3 3.8 nsto Y; see Figure3
VCC = 1.65 Vto 1.95 V 1.0 4.4 10.0 1.0 12.5 ns
VCC = 2.3 V to 2.7 V 0.5 2.9 6.0 0.5 7.5 ns
VCC = 2.7 V 0.5 3.0 6.0 0.5 7.5 ns
VCC = 3.0 Vto 3.6 V 0.5 2.8 5.5 0.5 6.9 ns
VCC = 4.5 Vto 5.5 V 0.5 2.3 4.5 0.5 5.6 ns
CPD power dissipation
capacitance
VCC =3.3 V; VI =GNDto VCC;
output enabled
[3] -35- - - pF
NXP Semiconductors 74LVC1GX04
X-tal driver

Table 9. Measurement points

1.65 V to 1.95V 0.5 VCC 0.5 VCC
2.3 V to 2.7V 0.5 VCC 0.5 VCC
2.7V 1.5V 1.5V
3.0V to 3.6V 1.5V 1.5V
4.5 V to 5.5V 0.5 VCC 0.5 VCC
NXP Semiconductors 74LVC1GX04
X-tal driver

Table 10. Test data

1.65 V to 1.95V VCC  2.0ns 30pF 1k open
2.3Vto 2.7V VCC  2.0ns 30pF 500 open
2.7V 2.7V  2.5ns 50pF 500 open
3.0Vto 3.6V 2.7V  2.5ns 50pF 500 open
4.5Vto 5.5V VCC  2.5ns 50pF 500 open
ic,good price


TEL:86-533-2716050      FAX:86-533-2716790
   

©2020 IC PHOENIX CO.,LIMITED