74LV574D ,Octal D-type flip-flop; positive edge-trigger 3-State74LV574Octal D-type flip-flop; positive edge-trigger; 3-stateRev. 04 — 14 May 2009 Product data sheet ..
74LV574D ,Octal D-type flip-flop; positive edge-trigger 3-Stateapplications. A clock (CP) and an outputenable (OE) input are common to all flip-flops. It is a low-v ..
74LV574DB ,Octal D-type flip-flop; positive edge-trigger; 3-stateapplications. A clock (CP) and an output enable (OE) input• Typical V (output ground bounce) 0.8V ..
74LV574DB ,Octal D-type flip-flop; positive edge-trigger; 3-stateapplications: 1.0 to 3.6VThe 74LV574 is an octal D-type flip–flop featuring separate D-type• Accept ..
74LV574PW ,Octal D-type flip-flop; positive edge-trigger; 3-stateINTEGRATED CIRCUITS74LV574Octal D-type flip-flop; positive edge-trigger (3-State)Product specificat ..
74LV595 ,8-bit serial-in/serial or parallel-out shift register with output latches (3-State)
7WBD3125USG , 2-Bit Translating Bus Switch
8.192 , 64-Pin 8-Bit Flash Microcontroller Product Brief
8.192 , 64-Pin 8-Bit Flash Microcontroller Product Brief
80021012A ,Octal Bus Transceivers With 3-State OutputsLogic Diagram (Positive Logic)1DIR19OE2A118B1To Seven Other ChannelsCopyright 2016, Texas Instrume ..
8035AHL , HMOS SINGLE-COMPONENT 8-BIT MICROCONTROLLER
8041-05-011 , DIP Reed Relays
74LV574D
Octal D-type flip-flop; positive edge-trigger; 3-state
General descriptionThe 74LV574isan octal D-type flip–flop featuring separate D-type inputsfor each flip-flop
and non-inverting 3-state outputsfor bus oriented applications.A clock (CP) andan output
enable (OE) input are common to all flip-flops. It is a low-voltage Si-gate CMOS device
and is pin and functionally compatible with the 74HC574 and 74HCT574.
The eight flip-flops will store the stateof their individual D-inputs that meet the set-up and
hold times requirements on the LOW to HIGH CP transition.
When OEis LOW, the contentsof the eight flip-flopsis availableat the outputs. When OE HIGH, the outputsgoto the high-impedance OFF-state. Operationof the OE input does
not affect the state of the flip-flops.
Features Wide operating voltage: 1.0 V to 5.5 V Optimized for low voltage applications: 1.0 V to 3.6 V Accepts TTL input levels between VCC = 2.7 V and VCC = 3.6 V Typical output ground bounce < 0.8 V at VCC = 3.3 V and Tamb = 25°C Typical HIGH-level output voltage (VOH) undershoot: > 2 V at VCC = 3.3 V and
Tamb =25°C ESD protection: HBM JESD22-A114E exceeds 2000V MM JESD22-A115-A exceeds 200V Common 3-state output enable input Multiple package options Specified from −40 °Cto+85 °C and from −40°Cto +125°C
Ordering information
74L V574
Octal D-type flip-flop; positive edge-trigger; 3-state
Rev. 04 — 14 May 2009 Product data sheet
Table 1. Ordering information74LV574N −40°Cto +125°C DIP20 plastic dual in-line package; 20 leads (300 mil) SOT146-1
74LV574D −40°Cto +125°C SO20 plastic small outline package; 20 leads; body width 7.5 mm SOT163-1
74LV574DB −40°Cto +125°C SSOP20 plastic shrink small outline package; 20 leads;
body width 5.3 mm
SOT339-1
74LV574PW −40°Cto +125°C TSSOP20 plastic thin shrink small outline package; 20 leads;
body width 4.4 mm
SOT360-1
NXP Semiconductors 74L V574
Octal D-type flip-flop; positive edge-trigger; 3-state Functional diagram
NXP Semiconductors 74L V574
Octal D-type flip-flop; positive edge-trigger; 3-state Pinning information
5.1 Pinning
5.2 Pin description
Table 2. Pin description 1 output enable input (active LOW)
D0 to D7 2, 3, 4, 5, 6, 7, 8, 9 data input
GND 10 ground (0 V) 11 clock input (LOW to HIGH; edge triggered)
Q0 to Q7 19, 18, 17, 16, 15, 14, 13, 12 data output
VCC 20 supply voltage
NXP Semiconductors 74L V574
Octal D-type flip-flop; positive edge-trigger; 3-state Functional description[1]H= HIGH voltage level= HIGH voltage level one set-up time prior to the LOW to HIGH CP transition= LOW voltage level= LOW voltage level one set-up time prior to the LOW to HIGH CP transition= high-impedance OFF-state= LOW to HIGH clock transition
Limiting values[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
[2] For DIP20 packages: above 70 °C the value of Ptot derates linearly with 12 mW/K.
For SO20 packages: above 70 °C the value of Ptot derates linearly with 8 mW/K.
For (T)SSOP20 packages: above 60 °C the value of Ptot derates linearly with 5.5 mW/K.
Table 3. Function table[1]Load and read register L ↑ lL L ↑ hH H
Load register and disable
outputs ↑ lL Z ↑ hH Z
Table 4. Limiting valuesIn accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0V).
VCC supply voltage −0.5 +7.0 V
IIK input clamping current VI < −0.5 V orVI >VCC+ 0.5V [1]- ±20 mA
IOK output clamping current VO< −0.5 V orVO >VCC+ 0.5V [1]- ±50 mA output current VO = −0.5 V to (VCC+ 0.5V) - ±35 mA
ICC supply current - 70 mA
IGND ground current −70 - mA
Tstg storage temperature −65 +150 °C
Ptot total power dissipation Tamb= −40°Cto +125°C [2]
DIP20 - 750 mW
SO20, SSOP20 and TSSOP20 - 500 mW
NXP Semiconductors 74L V574
Octal D-type flip-flop; positive edge-trigger; 3-state Recommended operating conditions[1] The static characteristics are guaranteed from VCC = 1.2 V to VCC = 5.5 V, but LV devices are guaranteed to function down to
VCC=1.0 V (with input levels GND or VCC).
Static characteristics
Table 5. Recommended operating conditionsVoltages are referenced to GND (ground = 0 V).
VCC supply voltage[1] 1.0 3.3 5.5 V input voltage 0 - VCC V output voltage 0 - VCC V
Tamb ambient temperature −40 +25 +125 °C
Δt/ΔV input transition rise and fall rate VCC = 1.0 V to 2.0 V - - 500 ns/V
VCC = 2.0 V to 2.7 V - - 200 ns/V
VCC = 2.7 V to 3.6 V - - 100 ns/V
VCC = 3.6 V to 5.5 V - - 50 ns/V
Table 6. Static characteristicsAt recommended operating conditions. Voltages are referenced to GND (ground = 0 V).
VIH HIGH-level input voltage VCC = 1.2 V 0.9 - - 0.9 - V
VCC = 2.0 V 1.4 - - 1.4 - V
VCC = 2.7 V to 3.6 V 2.0 - - 2.0 - V
VCC = 4.5 V to 5.5 V 0.7VCC - - 0.7VCC -V
VIL LOW-level input voltage VCC = 1.2 V - - 0.3 - 0.3 V
VCC = 2.0 V - - 0.6 - 0.6 V
VCC = 2.7 V to 3.6 V - - 0.8 - 0.8 V
VCC = 4.5 V to 5.5 V - - 0.3VCC - 0.3VCCV
VOH HIGH-level output voltage VI = VIH or VIL
IO = −100 μA; VCC = 1.2V - 1.2 - - - V
IO = −100 μA; VCC = 2.0V 1.8 2.0 - 1.8 - V
IO = −100 μA; VCC = 2.7V 2.5 2.7 - 2.5 - V
IO = −100 μA; VCC = 3.0V 2.8 3.0 - 2.8 - V
IO = −100 μA; VCC = 4.5V 4.3 4.5 - 4.3 - V
IO = −8 mA; VCC = 3.0V 2.4 2.82 - 2.2 - V
IO = −16 mA; VCC = 4.5V 3.6 4.2 - 3.5 - V
NXP Semiconductors 74L V574
Octal D-type flip-flop; positive edge-trigger; 3-state[1] Typical values are measured at Tamb = 25°C.
10. Dynamic characteristicsVOL LOW-level output voltage VI = VIH or VIL
IO = 100 μA; VCC = 1.2V - 0 - - - V
IO = 100 μA; VCC = 2.0V - 0 0.2 - 0.2 V
IO = 100 μA; VCC = 2.7V - 0 0.2 - 0.2 V
IO = 100 μA; VCC = 3.0V - 0 0.2 - 0.2 V
IO = 100 μA; VCC = 4.5V - 0 0.2 - 0.2 V
IO = 8 mA; VCC = 3.0V - 0.25 0.40 - 0.50 V
IO = 16 mA; VCC = 4.5V - 0.35 0.55 - 0.65 V input leakage current VI =VCCor GND;
VCC= 5.5V - 1.0 - 1.0 μA
IOZ OFF-state output current VI =VIH or VIL; =VCCor GND;
VCC= 5.5V
--5 - 10 μA
ICC supply current VI = VCC or GND; IO = 0A;
VCC= 5.5V - 20 - 160 μA
ΔICC additional supply current per input; VI = VCC − 0.6V;
VCC= 2.7Vto 3.6V - 500 - 850 μA input capacitance - 3.5 - - - pF
Table 6. Static characteristics …continuedAt recommended operating conditions. Voltages are referenced to GND (ground = 0 V).
Table 7. Dynamic characteristicsVoltages are referenced to GND (ground=0 V). For test circuit see Figure 10.
tpd propagation delay CPto Qn; see Figure7 [2]
VCC = 1.2 V - 80 - - - ns
VCC = 2.0 V - 27 34 - 43 ns
VCC = 2.7 V - 20 25 - 31 ns
VCC = 3.0 V to 3.6 V; CL =15pF [3] -13- - - ns
VCC = 3.0 V to 3.6 V [3] - 15 20 - 25 ns
VCC = 4.5 V to 5.5 V - - 17 - 21 ns
ten enable time OEto Qn; see Figure8 [4]
VCC = 1.2 V - 70 - - - ns
VCC = 2.0 V - 24 34 - 43 ns
VCC = 2.7 V - 18 25 - 31 ns
VCC = 3.0 V to 3.6 V [3] - 13 20 - 25 ns
VCC = 4.5 V to 5.5 V - - 17 - 21 ns
NXP Semiconductors 74L V574
Octal D-type flip-flop; positive edge-trigger; 3-state[1] Typical values are measured at Tamb =25°C.
[2] tpd is the same as tPLH and tPHL.
[3] Typical value measured at VCC = 3.3 V.
[4] ten is the same as tPZH and tPZL.
[5] tdis is the same as tPHZ and tPLZ.
[6] CPD is used to determine the dynamic power dissipation (PDin μW). =CPD× VCC2×fi× N+ ∑(CL× VCC2×fo) where:= input frequency in MHz;= output frequency in MHz;= output load capacitance inpF;
VCC= supply voltage in V;= number of inputs switching;
∑(CL× VCC2×fo)= sum of outputs.
tdis disable time OEto Qn; Figure8 [5]
VCC = 1.2 V - 75 - - - ns
VCC = 2.0 V - 27 27 - 34 ns
VCC = 2.7 V - 21 21 - 26 ns
VCC = 3.0 V to 3.6 V [3] - 16 17 - 21 ns
VCC = 4.5 V to 5.5 V [3] - - 15 - 18 ns pulse width CP , HIGH or LOW; see Figure7
VCC = 2.0 V 34 9 - 41 - ns
VCC = 2.7 V 25 6 - 30 - ns
VCC = 3.0 V to 3.6 V [3] 20 5 - 24 - ns
tsu set-up time Dn to CP; see Figure9
VCC = 1.2 V - 10 - - - ns
VCC = 2.0 V 22 4 - 26 - ns
VCC = 2.7 V 16 3 - 19 - ns
VCC = 3.0 V to 3.6 V [3] 13 2 - 15 - ns hold time Dn to CP; see Figure9
VCC = 1.2 V - −10 - - - ns
VCC = 2.0 V 5 −4- 5 - ns
VCC = 2.7 V 5 −3- 5 - ns
VCC = 3.0 V to 3.6 V [3] 5 −2- 5 - ns
fmax maximum
frequency
see Figure7
VCC= 2.0 V 15 40 - 12 - MHz
VCC= 2.7V 19 58 - 16 - MHz
VCC= 3.0Vto 3.6V [3] 24 70 - 20 - MHz
CPD power dissipation
capacitance=50 pF; fi = 1 MHz;= GNDto VCC
[6] 25 pF
Table 7. Dynamic characteristics …continuedVoltages are referenced to GND (ground=0 V). For test circuit see Figure 10.
NXP Semiconductors 74L V574
Octal D-type flip-flop; positive edge-trigger; 3-state
11. Waveforms
NXP Semiconductors 74L V574
Octal D-type flip-flop; positive edge-trigger; 3-state
Table 8. Measurement points< 2.7 V 0.5VCC 0.5VCC VOL + 0.3V VOH − 0.3V
2.7 V to 3.6V 1.5 V 1.5 V VOL + 0.3V VOH − 0.3V
≥ 4.5 V 0.5VCC 0.5VCC VOL + 0.3V VOH − 0.3V