74HC283D ,74HC283; 4-bit binary full adder with fast carry74HC2834-bit binary full adder with fast carryRev. 03 — 11 November 2004 Product data sheet1.
74HC283D ,74HC283; 4-bit binary full adder with fast carryGeneral descriptionThe 74HC283 is a high-speed Si-gate CMOS device and is pin compatible with low p ..
74HC299 ,3-state
74HC299D ,74HC/HCT299; 8-bit universal shift register; 3-stateINTEGRATED CIRCUITSDATA SHEETFor a complete data sheet, please also download:• The IC06 74HC/HCT/HC ..
74HC299D ,74HC/HCT299; 8-bit universal shift register; 3-stateGENERAL DESCRIPTION 2 nset to the high-impedance OFF-state. In this condition, theThe 74HC/HCT299 a ..
74HC299N ,74HC/HCT299; 8-bit universal shift register; 3-stateFEATURES The 74HC/HCT299 contain eight edge-triggered D-typeflip-flops and the interstage logic nec ..
74LVC543AD ,Octal D-type registered transceiver 3-State
74LVC543AD ,Octal D-type registered transceiver 3-State
74LVC573A ,Octal Transparent D-Type Latch with 3-State OutputsAbsolute Maximum Ratings are those values beyond which damage to the device may occur. Functional o ..
74LVC573ATTR ,OCTAL D-TYPE LATCH HIGH PERFORMANCEAbsolute Maximum Ratings are those values beyond which damage to the device may occur. Functional o ..
74LVC652 ,Octal transceiver/register with dual enable 3-State
74LVC74A ,positive-edge trigger
74HC283D
74HC283; 4-bit binary full adder with fast carry
General descriptionThe 74HC283isa high-speed Si-gate CMOS device andis pin compatible with low power
Schottky TTL (LSTTL). The 74HC283 is specified in compliance with JEDEC
standard no. 7A.
The 74HC283 adds two 4-bit binary words (An plus Bn) plus the incoming carry (CIN).
The binary sum appears on the sum outputs (S1 to S4) and the out-going carry (COUT)
according to the equation:
CIN + (A1 + B1) + 2(A2 + B2) + 4(A3 + B3) + 8(A4 + B4)=
= S1 + 2S2 + 4S3 + 8S4 + 16COUT
Where (+)= plus.
Due to the symmetry of the binary add function, the 74HC283 can be used with either all
active HIGH operands (positive logic)orall active LOW operands (negative logic).In case
of all active LOW operands the results S1 to S4 and COUT should be interpreted also as
active LOW. With active HIGH inputs, CIN must be held LOW when no carry in is
intended. Interchanging inputsof equal weight does not affect the operation, thus CIN, A1,
B1 can be assigned arbitrarily to pins 5, 6, 7, etc.
See the 74HC583 for the BCD version.
Features High-speed 4-bit binary addition Cascadable in 4-bit increments Fast internal look-ahead carry Low-power dissipation Complies with JEDEC standard no. 7A ESD protection: HBM EIA/JESD22-A114-B exceeds 2000V MM EIA/JESD22-A115-A exceeds 200V. Multiple package options Specified from −40 °Cto+80 °C and from −40°Cto +125 °C.
74HC283
4-bit binary full adder with fast carry
Philips Semiconductors 74HC283 Quick reference data[1] CPD is used to determine the dynamic power dissipation (PD in μW). =CPD× VCC2×fi× N+ ∑(CL× VCC2×fo) where:= input frequency in MHz;= output frequency in MHz;= output load capacitance in pF;
VCC= supply voltage in V;= number of inputs switching;
∑(CL× VCC2×fo) = sum of outputs.
Ordering information
Table 1: Quick reference dataGND= 0 V; Tamb =25 °C; tr =tf= 6 ns.
tPHL, tPLH propagation delay CL= 15 pF; VCC =5 V
CIN to S1 - 16 - ns
CIN to S2 - 18 - ns
CIN to S3 - 20 - ns
CIN to S4 - 23 - ns
An or Bn to Sn - 21 - ns
CIN to COUT - 20 - ns
An or Bn to COUT - 20 - ns input capacitance - 3.5 - pF
CPD power dissipation
capacitance= GND to VCC [1] -88 - pF
Table 2: Ordering information74HC283N −40 °C to +125°C DIP16 plastic dual in-line package; 16 leads (300 mil) SOT38-4
74HC283D −40 °C to +125°C SO16 plastic small outline package; 16 leads;
body width 3.9 mm
SOT109-1
74HC283DB −40 °C to +125°C SSOP16 plastic shrink small outline package; 16 leads;
body width 5.3 mm
SOT338-1
74HC283PW −40 °C to +125°C TSSOP16 plastic thin shrink small outline package; leads; body width 4.4 mm
SOT403-1
Philips Semiconductors 74HC283 Functional diagram
Philips Semiconductors 74HC283 Pinning information
6.1 Pinning
Philips Semiconductors 74HC283
6.2 Pin description Functional description
7.1 Function table[1]H= HIGH voltage level;= LOW voltage level.
[2] Example for active HIGH: 10 + 9 (0 + 1010 + 1001) = 19 (10011).
[3] Example for active LOW: 5 + 6 (1 + 0101 + 0110)= 12 (01100).
Table 3: Pin description 1 sum output 2 2 B operand input 2 3 A operand input 2 4 sum output 1 5 A operand input 1 6 B operand input 1
CIN 7 carry input
GND 8 ground (0 V)
COUT 9 carry output 10 sum output 4 11 B operand input 4 12 A operand input 4 13 sum output 3 14 A operand input 3 15 B operand input 3
VCC 16 positive supply voltage
Table 4: Function table[1]
Philips Semiconductors 74HC283 Limiting values[1] Above 70 °C: Ptot derates linearly with 12 mW/K.
[2] Above 70 °C: Ptot derates linearly with 8 mW/K.
Recommended operating conditions
Table 5: Limiting valuesIn accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to
GND (ground = 0 V).
VCC supply voltage −0.5 +7 V
IIK input diode current VI < −0.5 V or VI >VCC+ 0.5 V - ±20 mA
IOK output diode current VO< −0.5 V or >VCC+ 0.5V ±20 mA output source or sink
current
VO = −0.5 V to VCC+ 0.5V - ±25 mA
ICC, IGND VCC or GND current - ±50 mA
Tstg storage temperature −65 +150 °C
Ptot power dissipation
DIP16 package [1]- 750 mW
SO16, SSOP16 and
TSSOP16 packages
[2]- 500 mW
Table 6: Recommended operating conditionsVCC supply voltage 2.0 5.0 6.0 V input voltage 0 - VCC V output voltage 0 - VCC V
tr, tf input rise and fall times VCC = 2.0 V - - 1000 ns
VCC = 4.5 V - 6.0 500 ns
VCC = 6.0 V - - 400 ns
Tamb ambient temperature −40 - +125 °C
Philips Semiconductors 74HC283
10. Static characteristics
Table 7: Static characteristicsAt recommended operating conditions; voltages are referenced to GND (ground=0V).
Tamb =25°C
VIH HIGH-level input voltage VCC= 2.0V 1.5 1.2 - V
VCC= 4.5V 3.15 2.4 - V
VCC= 6.0V 4.2 3.2 - V
VIL LOW-level input voltage VCC= 2.0V - 0.8 0.5 V
VCC= 4.5V - 2.1 1.35 V
VCC= 6.0V - 2.8 1.8 V
VOH HIGH-level output voltage VI =VIHorVIL= −20 μA; VCC= 2.0V 1.9 2.0 - V= −20 μA; VCC= 4.5V 4.4 4.5 - V= −20 μA; VCC= 6.0V 5.9 6.0 - V=−4 mA; VCC= 4.5V 3.98 4.32 - V= −5.2 mA; VCC= 6.0V 5.48 5.81 - V
VOL LOW-level output voltage VI =VIHorVIL =20 μA; VCC= 2.0V - 0 0.1 V =20 μA; VCC= 4.5V - 0 0.1 V =20 μA; VCC= 6.0V - 0 0.1 V=4 mA; VCC= 4.5V - 0.15 0.26 V= 5.2 mA; VCC= 6.0V - 0.16 0.26 V
ILI input leakage current VI =VCCor GND; VCC= 6.0V - - ±0.1 μA
ICC quiescent supply current VI =VCCor GND; IO =0A;
VCC= 6.0V - 8.0 μA input capacitance - 3.5 - pF
Tamb= −40 °C to +85°C
VIH HIGH-level input voltage VCC= 2.0V 1.5 - - V
VCC= 4.5V 3.15 - - V
VCC= 6.0V 4.2 - - V
VIL LOW-level input voltage VCC= 2.0V - - 0.5 V
VCC= 4.5V - - 1.35 V
VCC= 6.0V - - 1.8 V
VOH HIGH-level output voltage VI =VIHorVIL= −20 μA; VCC= 2.0V 1.9 - - V= −20 μA; VCC= 4.5V 4.4 - - V= −20 μA; VCC= 6.0V 5.9 - - V=−4 mA; VCC= 4.5V 3.84 - - V= −5.2 mA; VCC= 6.0V 5.34 - - V
Philips Semiconductors 74HC283VOL LOW-level output voltage VI =VIHorVIL =20 μA; VCC= 2.0V - - 0.1 V =20 μA; VCC= 4.5V - - 0.1 V =20 μA; VCC= 6.0V - - 0.1 V=4 mA; VCC= 4.5V - - 0.33 V= 5.2 mA; VCC= 6.0V - - 0.33 V
ILI input leakage current VI =VCCor GND; VCC= 6.0V - - ±1.0 μA
ICC quiescent supply current VI =VCCor GND; IO =0A;
VCC= 6.0V
--80 μA
Tamb= −40 °C to +125°C
VIH HIGH-level input voltage VCC= 2.0V 1.5 - - V
VCC= 4.5V 3.15 - - V
VCC= 6.0V 4.2 - - V
VIL LOW-level input voltage VCC= 2.0V - - 0.5 V
VCC= 4.5V - - 1.35 V
VCC= 6.0V - - 1.8 V
VOH HIGH-level output voltage VI =VIHorVIL -= −20 μA; VCC= 2.0V 1.9 - - V= −20 μA; VCC= 4.5V 4.4 - - V= −20 μA; VCC= 6.0V 5.9 - - V=−4 mA; VCC= 4.5V 3.7 - - V= −5.2 mA; VCC= 6.0V 5.2 - - V
VOL LOW-level output voltage VI =VIHorVIL - =20 μA; VCC= 2.0V - - 0.1 V =20 μA; VCC= 4.5V - - 0.1 V =20 μA; VCC= 6.0V - - 0.1 V=4 mA; VCC= 4.5V - - 0.4 V= 5.2 mA; VCC= 6.0V - - 0.4 V
ILI input leakage current VI =VCCor GND; VCC= 6.0V - - ±1.0 μA
ICC quiescent supply current VI =VCCor GND; IO =0A;
VCC= 6.0V - 160 μA
Table 7: Static characteristics …continuedAt recommended operating conditions; voltages are referenced to GND (ground=0V).
Philips Semiconductors 74HC283
11. Dynamic characteristics
Table 8: Dynamic characteristicsGND= 0 V; tr=tf= 6 ns; CL= 50 pF; see Figure7.
Tamb = 25°C
tPHL, tPLH propagation delay CIN to S1 see Figure6
VCC = 2.0 V - 52 160 ns
VCC = 4.5 V - 19 32 ns
VCC = 6.0 V - 15 27 ns
VCC = 5.0 V; CL = 15 pF - 16 - ns
propagation delay CIN to S2 see Figure6
VCC = 2.0 V - 58 180 ns
VCC = 4.5 V - 21 36 ns
VCC = 6.0 V - 17 31 ns
VCC = 5.0 V; CL = 15 pF - 18 - ns
propagation delay CIN to S3 see Figure6
VCC = 2.0 V - 63 195 ns
VCC = 4.5 V - 23 39 ns
VCC = 6.0 V - 18 33 ns
VCC = 5.0 V; CL = 15 pF - 20 - ns
propagation delay CIN to S4 see Figure6
VCC = 2.0 V - 74 230 ns
VCC = 4.5 V - 27 46 ns
VCC = 6.0 V - 22 39 ns
VCC = 5.0 V; CL = 15 pF - 23 - ns
propagation delay An or Bn to Sn see Figure6
VCC = 2.0 V - 69 210 ns
VCC = 4.5 V - 25 42 ns
VCC = 6.0 V - 20 36 ns
VCC = 5.0 V; CL = 15 pF - 21 - ns
propagation delay CIN to COUT see Figure6
VCC = 2.0 V - 63 195 ns
VCC = 4.5 V - 23 39 ns
VCC = 6.0 V - 18 33 ns
VCC = 5.0 V; CL = 15 pF - 20 - ns
propagation delay An or Bn to
COUT
see Figure6
VCC = 2.0 V - 63 195 ns
VCC = 4.5 V - 23 39 ns
VCC = 6.0 V - 18 33 ns
VCC = 5.0 V; CL = 15 pF - 20 - ns
Philips Semiconductors 74HC283tTHL, tTLH output transition time see Figure6
VCC = 2.0 V - 19 75 ns
VCC = 4.5 V - 7 15 ns
VCC = 6.0 V - 6 13 ns
CPD power dissipation capacitance VI= GND to VCC [1] -88 - pF
Tamb = −40 °C to +85°C
tPHL, tPLH propagation delay CIN to S1 see Figure6
VCC = 2.0 V - - 200 ns
VCC = 4.5 V - - 40 ns
VCC = 6.0 V - - 34 ns
propagation delay CIN to S2 see Figure6
VCC = 2.0 V - - 225 ns
VCC = 4.5 V - - 45 ns
VCC = 6.0 V - - 38 ns
propagation delay CIN to S3 see Figure6
VCC = 2.0 V - - 245 ns
VCC = 4.5 V - - 49 ns
VCC = 6.0 V - - 42 ns
propagation delay CIN to S4 see Figure6
VCC = 2.0 V - - 290 ns
VCC = 4.5 V - - 58 ns
VCC = 6.0 V - - 49 ns
propagation delay An or Bn to Sn see Figure6
VCC = 2.0 V - - 265 ns
VCC = 4.5 V - - 53 ns
VCC = 6.0 V - - 45 ns
propagation delay CIN to COUT see Figure6
VCC = 2.0 V - - 245 ns
VCC = 4.5 V - - 49 ns
VCC = 6.0 V - - 42 ns
propagation delay An or Bn to
COUT
see Figure6
VCC = 2.0 V - - 245 ns
VCC = 4.5 V - - 49 ns
VCC = 6.0 V - - 42 ns
tTHL, tTLH output transition time see Figure6
VCC = 2.0 V - - 95 ns
VCC = 4.5 V - - 19 ns
VCC = 6.0 V - - 16 ns
Table 8: Dynamic characteristics …continuedGND= 0 V; tr=tf= 6 ns; CL= 50 pF; see Figure7.