IC Phoenix
 
Home ›  7717 > 74HC245N-74HC245PW-74HCT245PW,Octal bus transceiver; 3-state
74HC245N-74HC245PW-74HCT245PW Fast Delivery,Good Price
Part Number:
If you need More Quantity or Better Price,Welcom Any inquiry.
We available via phone +865332716050 Email
Partno Mfg Dc Qty AvailableDescript
74HC245NNXPN/a1670avai74HC/HCT245; Octal bus transceiver; 3-state
74HC245PWNXP Pb-freeN/a19993avaiOctal bus transceiver; 3-state
74HCT245PWNXPN/a36698avaiOctal bus transceiver; 3-state


74HCT245PW ,Octal bus transceiver; 3-stateGeneral descriptionThe 74HC245; 74HCT245 is a high-speed Si-gate CMOS device and is pin compatiblew ..
74HCT251D ,74HC/HCT251; 8-input multiplexer; 3-stateFEATURES The 74HC/HCT251 are the logic implementations ofsingle-pole 8-position switches with the s ..
74HCT251N ,8-input multiplexer; 3-stateFEATURES The 74HC/HCT251 are the logic implementations ofsingle-pole 8-position switches with the s ..
74HCT251N ,8-input multiplexer; 3-stateGENERAL DESCRIPTIONwhen the output enable input is HIGH, allowing multiplexerexpansion by tying the ..
74HCT251PW ,8-input multiplexer; 3-stateFEATURES The 74HC/HCT251 are the logic implementations ofsingle-pole 8-position switches with the s ..
74HCT253 ,3-state
74VHC393MX ,Dual 4-Bit Binary CounterFeaturespower dissipation. It contains two independent counter cir-cuits in one package, so that co ..
74VHC393N ,Dual 4-Bit Binary CounterFeaturespower dissipation. It contains two independent counter cir-cuits in one package, so that co ..
74VHC393N ,Dual 4-Bit Binary CounterGeneral Descriptionand two supply systems such as battery back up. This cir-The VHC393 is an advanc ..
74VHC393SJ ,Dual 4-Bit Binary CounterGeneral Descriptionand two supply systems such as battery back up. This cir-The VHC393 is an advanc ..
74VHC393SJX ,Dual 4-Bit Binary Counter74VHC393 Dual 4-Bit Binary CounterMarch 1993Revised February 200574VHC393Dual 4-Bit Binary Countera ..
74VHC4040 ,12-Stage Binary Counter


74HC245N-74HC245PW-74HCT245PW
Octal bus transceiver; 3-state
General descriptionThe 74HC245; 74HCT245 is a high-speed Si-gate CMOS device and is pin compatible
with Low-Power Schottky TTL (LSTTL).
The 74HC245; 74HCT245 is an octal transceiver featuring non-inverting 3-state bus
compatible outputs in both send and receive directions. The 74HC245; 74HCT245
features an output enable input (OE) for easy cascading and a send/receive input (DIR)
for direction control. OE controls the outputs so that the buses are effectively isolated.
The 74HC245; 74HCT245 is similar to the 74HC640; 74HCT640 but has true
(non-inverting) outputs. Features Octal bidirectional bus interface Non-inverting 3-state outputs Multiple package options Complies with JEDEC standard no. 7A ESD protection: HBM EIA/JESD22-A114-B exceeds 2000V MM EIA/JESD22-A115-A exceeds 200V Specified from −40 °Cto+85 °C and from −40°Cto +125°C Quick reference data
74HC245; 74HCT245
Octal bus tranceiver; 3-state
Table 1: Quick reference data

GND=0 V; Tamb =25 °C; tr =tf= 6 ns.
Type 74HC245

tPHL, tPLH propagation delayto Bn or Bn to An =15pF;
VCC =5V -ns input capacitance - 3.5 - pF
CI/O input/output capacitance - 10 - pF
CPD power dissipation
capacitance per
transceiver= GND to VCC [1] -30 - pF
Type 74HCT245

tPHL, tPLH propagation delayto Bn or Bn to An =15pF;
VCC =5V
-10 - ns
Philips Semiconductors 74HC245; 74HCT245
[1] CPDis used to determine the dynamic power dissipation (PD in μW): =CPD× VCC2×fi× N+ ∑ (CL× VCC2× fo) where:= input frequency in MHz;= output frequency in MHz;= output load capacitance in pF;
VCC= supply voltage in V;= number of inputs switching;(CL× VCC2×fo)= sum of outputs. Ordering information input capacitance - 3.5 - pF
CI/O input/output capacitance - 10 - pF
CPD power dissipation
capacitance per
transceiver= GND to
VCC− 1.5V
[1] -30 - pF
Table 1: Quick reference data …continued

GND=0 V; Tamb =25 °C; tr =tf= 6 ns.
Table 2: Ordering information

74HC245N −40 °C to +125°C DIP20 plastic dual in-line package; 20 leads (300 mil) SOT146-1
74HC245D −40 °C to +125°C SO20 plastic small outline package; 20 leads;
body width 7.5 mm
SOT163-1
74HC245PW −40 °C to +125°C TSSOP20 plastic thin shrink small outline package; 20 leads;
body width 4.4 mm
SOT360-1
74HC245DB −40 °C to +125°C SSOP20 plastic shrink small outline package; 20 leads;
body width 5.3 mm
SOT339-1
74HC245BQ −40 °C to +125°C DHVQFN20 plastic dual-in-line compatible thermal enhanced
very thin quadflat packageno leads;20 terminals;
body 2.5× 4.5× 0.85 mm
SOT764-1
74HCT245N −40 °C to +125°C DIP20 plastic dual in-line package; 20 leads (300 mil) SOT146-1
74HCT245D −40 °C to +125°C SO20 plastic small outline package; 20 leads;
body width 7.5 mm
SOT163-1
74HCT245PW −40 °C to +125°C TSSOP20 plastic thin shrink small outline package; 20 leads;
body width 4.4 mm
SOT360-1
74HCT245DB −40 °C to +125°C SSOP20 plastic shrink small outline package; 20 leads;
body width 5.3 mm
SOT339-1
74HCT245BQ −40 °C to +125°C DHVQFN20 plastic dual-in-line compatible thermal enhanced
very thin quadflat packageno leads;20 terminals;
body 2.5× 4.5× 0.85 mm
SOT764-1
Philips Semiconductors 74HC245; 74HCT245 Functional diagram
Philips Semiconductors 74HC245; 74HCT245 Pinning information
6.1 Pinning
6.2 Pin description
Table 3: Pin description

DIR 1 direction control 2 data input/output 3 data input/output 4 data input/output 5 data input/output 6 data input/output 7 data input/output 8 data input/output 9 data input/output
GND 10 ground (0V) 11 data input/output 12 data input/output 13 data input/output 14 data input/output 15 data input/output 16 data input/output
Philips Semiconductors 74HC245; 74HCT245 Functional description
7.1 Function table

[1]H= HIGH voltage level;= LOW voltage level;= don’t care;= high-impedance OFF-state. Limiting values
[1] For DIP20 packages: above 70 °C, Ptot derates linearly with 12 mW/K.
For SO20 packages: above 70 °C, Ptot derates linearly with 8 mW/K.
For SSOP20 and TSSOP20 packages: above 60 °C, Ptot derates linearly with 5.5 mW/K.
For DHVQFN20 packages: above 60 °C, Ptot derates linearly with 4.5 mW/K. 17 data input/output 18 data input/output 19 output enable input (active LOW)
VCC 20 supply voltage
Table 3: Pin description …continued
Table 4: Function table[1]
L A = B input H input B = A Z Z
Table 5: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to
GND (ground = 0 V).
VCC supply voltage −0.5 +7 V
IIK input diode current VI < −0.5 V or VI >VCC+ 0.5 V - ±20 mA
IOK output diode current VO< −0.5 V or >VCC+ 0.5V ±20 mA output source or sink
current
VO = −0.5 V to VCC+ 0.5V - ±35 mA
ICC, IGND VCC or GND current - ±70 mA
Tstg storage temperature −65 +150 °C
Ptot total power dissipation [1]
DIP20 package - 750 mW
SO20, SSOP20,
TSSOP20 and
DHVQFN20 packages 500 mW
Philips Semiconductors 74HC245; 74HCT245 Recommended operating conditions
10. Static characteristics
Table 6: Recommended operating conditions
Type 74HC245

VCC supply voltage 2.0 5.0 6.0 V input voltage 0 - VCC V output voltage 0 - VCC V
tr, tf input rise and fall
times
VCC = 2.0 V - - 1000 ns
VCC = 4.5 V - 6.0 500 ns
VCC = 6.0 V - - 400 ns
Tamb ambient temperature −40 - +125 °C
Type 74HCT245

VCC supply voltage 4.5 5.0 5.5 V input voltage 0 - VCC V output voltage 0 - VCC V
tr, tf input rise and fall
times
VCC = 4.5 V - 6.0 500 ns
Tamb ambient temperature −40 - +125 °C
Table 7: Static characteristics type 74HC245

At recommended operating conditions; voltages are referenced to GND (ground=0V).
Tamb =25
°C
VIH HIGH-level input voltage VCC= 2.0V 1.5 1.2 - V
VCC= 4.5V 3.15 2.4 - V
VCC= 6.0V 4.2 3.2 - V
VIL LOW-level input voltage VCC= 2.0V - 0.8 0.5 V
VCC= 4.5V - 2.1 1.35 V
VCC= 6.0V - 2.8 1.8 V
VOH HIGH-level output voltage VI =VIHorVIL= −20 μA; VCC= 2.0V 1.9 2.0 - V= −20 μA; VCC= 4.5V 4.4 4.5 - V= −20 μA; VCC= 6.0V 5.9 6.0 - V= −6.0 mA; VCC= 4.5V 3.98 4.32 - V= −7.8 mA; VCC= 6.0V 5.48 5.81 - V
Philips Semiconductors 74HC245; 74HCT245
VOL LOW-level output voltage VI =VIHorVIL =20 μA; VCC= 2.0V - 0 0.1 V =20 μA; VCC= 4.5V - 0 0.1 V =20 μA; VCC= 6.0V - 0 0.1 V= 6.0 mA; VCC= 4.5V - 0.15 0.26 V= 7.8 mA; VCC= 6.0V - 0.16 0.26 V
ILI input leakage current VI =VCCor GND; VCC= 6.0V - - ±0.1 μA
IOZ OFF-state output current VI =VIHor VIL; VO =VCCor GND;
VCC= 6.0V ±0.5 μA
ICC quiescent supply current VI =VCCor GND; IO =0A;
VCC= 6.0V - 8.0 μA input capacitance - 3.5 - pF
CI/O input/output capacitance - 10 - pF
Tamb=
−40 °C to +85°C
VIH HIGH-level input voltage VCC= 2.0V 1.5 - - V
VCC= 4.5V 3.15 - - V
VCC= 6.0V 4.2 - - V
VIL LOW-level input voltage VCC= 2.0V - - 0.5 V
VCC= 4.5V - - 1.35 V
VCC= 6.0V - - 1.8 V
VOH HIGH-level output voltage VI =VIHorVIL= −20 μA; VCC= 2.0V 1.9 - - V= −20 μA; VCC= 4.5V 4.4 - - V= −20 μA; VCC= 6.0V 5.9 - - V= −6.0 mA; VCC= 4.5V 3.84 - - V= −7.8 mA; VCC= 6.0V 5.34 - - V
VOL LOW-level output voltage VI =VIHorVIL =20 μA; VCC= 2.0V - - 0.1 V =20 μA; VCC= 4.5V - - 0.1 V =20 μA; VCC= 6.0V - - 0.1 V= 6.0 mA; VCC= 4.5V - - 0.33 V= 7.8 mA; VCC= 6.0V - - 0.33 V
ILI input leakage current VI =VCCor GND; VCC= 6.0V - - ±1.0 μA
IOZ OFF-state output current VI =VIHor VIL; VO =VCCor GND;
VCC= 6.0V ±5.0 μA
ICC quiescent supply current VI =VCCor GND; IO =0A;
VCC= 6.0V
--80 μA
Tamb=
−40 °C to +125°C
VIH HIGH-level input voltage VCC= 2.0V 1.5 - - V
VCC= 4.5V 3.15 - - V
VCC= 6.0V 4.2 - - V
Table 7: Static characteristics type 74HC245 …continued

At recommended operating conditions; voltages are referenced to GND (ground=0V).
Philips Semiconductors 74HC245; 74HCT245
VIL LOW-level input voltage VCC= 2.0V - - 0.5 V
VCC= 4.5V - - 1.35 V
VCC= 6.0V - - 1.8 V
VOH HIGH-level output voltage VI =VIHorVIL -= −20 μA; VCC= 2.0V 1.9 - - V= −20 μA; VCC= 4.5V 4.4 - - V= −20 μA; VCC= 6.0V 5.9 - - V= −6.0 mA; VCC= 4.5V 3.7 - - V= −7.8 mA; VCC= 6.0V 5.2 - - V
VOL LOW-level output voltage VI =VIHorVIL - =20 μA; VCC= 2.0V - - 0.1 V =20 μA; VCC= 4.5V - - 0.1 V =20 μA; VCC= 6.0V - - 0.1 V= 6.0 mA; VCC= 4.5V - - 0.4 V= 7.8 mA; VCC= 6.0V - - 0.4 V
ILI input leakage current VI =VCCor GND; VCC= 6.0V - - ±1.0 μA
IOZ OFF-state output current VI =VIHor VIL; VO =VCCor GND;
VCC= 6.0V ±10.0 μA
ICC quiescent supply current VI =VCCor GND; IO =0A;
VCC= 6.0V - 160 μA
Table 7: Static characteristics type 74HC245 …continued

At recommended operating conditions; voltages are referenced to GND (ground=0V).
Table 8: Static characteristics type 74HCT245

At recommended operating conditions; voltages are referenced to GND (ground=0V).
Tamb =25
°C
VIH HIGH-level input voltage VCC= 4.5 V to 5.5V 2.0 1.6 - V
VIL LOW-level input voltage VCC= 4.5 V to 5.5V - 1.2 0.8 V
VOH HIGH-level output voltage VI =VIHor VIL; VCC= 4.5V= −20μA 4.4 4.5 - V=−6 mA 3.98 4.32 - V
VOL LOW-level output voltage VI =VIHor VIL; VCC= 4.5V =20μA - 0 0.1 V= 6.0 mA - 0.15 0.26 V
ILI input leakage current VI =VCCor GND; VCC= 5.5V - - ±0.1 μA
IOZ OFF-state output current VI =VIHor VIL; VCC= 5.5V; =VCC or GND per input pin;
other inputsat VCCor GND;IO =0A ±0.5 μA
ICC quiescent supply current VI =VCCor GND; IO =0A;
VCC= 5.5V - 8.0 μA
Philips Semiconductors 74HC245; 74HCT245
ΔICC additional quiescent supply
current per input pin =VCC− 2.1 V; other inputs at =VCCor GND;
VCC= 4.5Vto 5.5 V; IO =0A
An or Bn inputs - 40 144 μA
OE input - 150 540 μA
DIR input - 90 324 μA input capacitance - 3.5 - pF
CI/O input/output capacitance - 10 - pF
Tamb=
−40 °C to +85°C
VIH HIGH-level input voltage VCC= 4.5 V to 5.5V 2.0 - - V
VIL LOW-level input voltage VCC= 4.5 V to 5.5V - - 0.8 V
VOH HIGH-level output voltage VI =VIHor VIL; VCC= 4.5V= −20μA 4.4 - - V=−6 mA 3.84 - - V
VOL LOW-level output voltage VI =VIHor VIL; VCC= 4.5V =20μA - - 0.1 V= 6.0 mA - - 0.33 V
ILI input leakage current VI =VCCor GND; VCC= 5.5V - - ±1.0 μA
IOZ OFF-state output current VI =VIHor VIL; VCC= 5.5V; =VCC or GND per input pin;
other inputsat VCCor GND;IO =0A ±5.0 μA
ICC quiescent supply current VI =VCCor GND; IO =0A;
VCC= 5.5V
--80 μA
ΔICC additional quiescent supply
current per input pin =VCC− 2.1 V; other inputs at =VCCor GND;
VCC= 4.5Vto 5.5 V; IO =0A
An or Bn inputs - - 180 μA
OE input - - 675 μA
DIR input - - 405 μA
Tamb=
−40 °C to +125°C
VIH HIGH-level input voltage VCC= 4.5 V to 5.5V 2.0 - - V
VIL LOW-level input voltage VCC= 4.5 V to 5.5V - - 0.8 V
VOH HIGH-level output voltage VI =VIHor VIL; VCC= 4.5V= −20μA 4.4 - - V=−6 mA 3.7 - - V
VOL LOW-level output voltage VI =VIHor VIL; VCC= 4.5V =20μA - - 0.1 V= 6.0 mA - - 0.4 V
ILI input leakage current VI =VCCor GND; VCC= 5.5V - - ±1.0 μA
IOZ OFF-state output current VI =VIHor VIL; VCC= 5.5V; =VCC or GND per input pin;
other inputsat VCCor GND;IO =0A ±10 μA
Table 8: Static characteristics type 74HCT245 …continued

At recommended operating conditions; voltages are referenced to GND (ground=0V).
Philips Semiconductors 74HC245; 74HCT245
11. Dynamic characteristics

ICC quiescent supply current VI =VCCor GND; IO =0A;
VCC= 5.5V - 160 μA
ΔICC additional quiescent supply
current per input pin =VCC− 2.1 V; other inputs at =VCCor GND;
VCC= 4.5Vto 5.5 V; IO =0A
An or Bn inputs - - 196 μA
OE input - - 735 μA
DIR input - - 441 μA
Table 8: Static characteristics type 74HCT245 …continued

At recommended operating conditions; voltages are referenced to GND (ground=0V).
Table 9: Dynamic characteristics type 74HC245

GND=0 V; test circuit see Figure7.
Tamb = 25
°C
tPHL, tPLH propagation delayAntoBnorBn
to An
see Figure5
VCC = 2.0 V - 25 90 ns
VCC = 4.5 V - 9 18 ns
VCC = 5.0 V; CL =15pF - 7 - ns
VCC = 6.0 V - 7 15 ns
tPZH, tPZL 3-state output enable time OE to
An or OE to Bn
see Figure6
VCC = 2.0 V - 30 150 ns
VCC = 4.5 V - 11 30 ns
VCC = 6.0 V - 9 26 ns
tPHZ, tPLZ 3-state output disable time OE to
An or OE to Bn
see Figure6
VCC = 2.0 V - 41 150 ns
VCC = 4.5 V - 15 30 ns
VCC = 6.0 V - 12 26 ns
tTHL, tTLH output transition time see Figure5
VCC = 2.0 V - 14 60 ns
VCC = 4.5 V - 5 12 ns
VCC = 6.0 V - 4 10 ns
CPD power dissipation capacitance
per transceiver= GND to VCC [1] -30 - pF
Tamb =
−40 °C to +85°C
tPHL, tPLH propagation delayAntoBnorBn
to An
see Figure5
VCC = 2.0 V - - 115 ns
VCC = 4.5 V - - 23 ns
VCC = 6.0 V - - 20 ns
Philips Semiconductors 74HC245; 74HCT245
[1] CPDis used to determine the dynamic power dissipation (PD in μW): =CPD× VCC2×fi× N+ ∑ (CL× VCC2× fo) where:= input frequency in MHz;= output frequency in MHz;= output load capacitance in pF;
VCC= supply voltage in V;= number of inputs switching;(CL× VCC2×fo)= sum of outputs.
tPZH, tPZL 3-state output enable time OE to
An or OE to Bn
see Figure6
VCC = 2.0 V - - 190 ns
VCC = 4.5 V - - 38 ns
VCC = 6.0 V - - 33 ns
tPHZ, tPLZ 3-state output disable time OE to
An or OE to Bn
see Figure6
VCC = 2.0 V - - 190 ns
VCC = 4.5 V - - 38 ns
VCC = 6.0 V - - 33 ns
tTHL, tTLH output transition time see Figure5
VCC = 2.0 V - - 75 ns
VCC = 4.5 V - - 15 ns
VCC = 6.0 V - - 13 ns
Tamb =
−40 °C to +125°C
tPHL, tPLH propagation delayAntoBnorBn
to An
see Figure5
VCC = 2.0 V - - 135 ns
VCC = 4.5 V - - 27 ns
VCC = 6.0 V - - 23 ns
tPZH, tPZL 3-state output enable time OE to
An or OE to Bn
see Figure6
VCC = 2.0 V - - 225 ns
VCC = 4.5 V - - 45 ns
VCC = 6.0 V - - 38 ns
tPHZ, tPLZ 3-state output disable time OE to
An or OE to Bn
see Figure6
VCC = 2.0 V - - 225 ns
VCC = 4.5 V - - 45 ns
VCC = 6.0 V - - 38 ns
tTHL, tTLH output transition time see Figure5
VCC = 2.0 V - - 90 ns
VCC = 4.5 V - - 18 ns
VCC = 6.0 V - - 15 ns
Table 9: Dynamic characteristics type 74HC245 …continued

GND=0 V; test circuit see Figure7.
ic,good price


TEL:86-533-2716050      FAX:86-533-2716790
   

©2020 IC PHOENIX CO.,LIMITED