74HC243DB ,Quad bus transceiver; 3-stateGeneral descriptionThe 74HC243 is a high-speed Si-gate CMOS device and is pin compatible with low p ..
74HC243N ,Quad bus transceiver; 3-state74HC243Quad bus transceiver; 3-stateRev. 03 — 12 November 2004 Product data sheet1.
74HC244 ,Octal 3−State Noninverting Buffer/Line Driver/Line ReceiverThe 74HC244 is identical in pinout to the LS244. The device inputsare compatible with standard CMOS ..
74HC244D ,74HC/HCT244; Octal buffer/line driver; 3-stateINTEGRATED CIRCUITSDATA SHEETFor a complete data sheet, please also download:• The IC06 74HC/HCT/HC ..
74HC244DB ,Octal buffer, line driver; 3-stateINTEGRATED CIRCUITSDATA SHEETFor a complete data sheet, please also download:• The IC06 74HC/HCT/HC ..
74HC244DB ,Octal buffer, line driver; 3-stateFEATURES The 74HC/HCT244 are octal non-inverting buffer/linedrivers with 3-state outputs. The 3-sta ..
74LVC241AD ,Octal buffer/line driver with 5-volt tolerant inputs/outputs 3-StateFEATURES DESCRIPTIONThe 74LVC241A is a high-performance, low-power, low-voltage,• 5-Volt tolerant i ..
74LVC241AD ,Octal buffer/line driver with 5-volt tolerant inputs/outputs 3-StateFeatures and benefits 5 V tolerant inputs/outputs, for interfacing with 5 V logic Supply voltage ..
74LVC241ADB ,Octal buffer/line driver with 5 V tolerant inputs/outputs; 3-stateINTEGRATED CIRCUITS74LVC241AOctal buffer/line driver with 5-volt tolerantinputs/outputs (3-State)Pr ..
74LVC241ADB ,Octal buffer/line driver with 5 V tolerant inputs/outputs; 3-stateGeneral descriptionThe 74LVC241A is an octal non-inverting buffer/line driver with 3-state outputs. ..
74LVC241APW ,Octal buffer/line driver with 5-volt tolerant inputs/outputs 3-StateFEATURES DESCRIPTIONThe 74LVC241A is a high-performance, low-power, low-voltage,• 5-Volt tolerant i ..
74LVC244 ,Octal buffer/line driver with 5-volt tolerant inputs/outputs 3-Statetitlefeatures allow the use of• CMOS low power consumptionthese devices as translators in a mixed 3.3V/5 ..
74HC243D-74HC243DB-74HC243N
74HC243; Quad bus transceiver; 3-state
General descriptionThe 74HC243isa high-speed Si-gate CMOS device andis pin compatible with low power
Schottky TTL (LSTTL). The 74HC243 is specified in compliance with JEDEC
standard no. 7A.
The 74HC243 is a quad bus transceiver featuring non-inverting 3-state bus compatible
outputs in both send and receive directions. The 74HC243 is designed for 4-line
asynchronous 2-way data communications between data buses.
The output enable inputs (OEA and OEB) can be used to isolate the buses.
The 74HC243 is similar to the 74HC242 but has non-inverting (true) outputs.
Features Non-inverting 3-state outputs 2-way asynchronous data bus communication Low-power dissipation Complies with JEDEC standard no. 7A ESD protection: HBM EIA/JESD22-A114-B exceeds 2000V MM EIA/JESD22-A115-A exceeds 200V. Multiple package options Specified from −40 °Cto+80 °C and from −40°Cto +125 °C.
74HC243
Quad bus transceiver; 3-state
Philips Semiconductors 74HC243 Quick reference data[1] CPD is used to determine the dynamic power dissipation (PD in μW). =CPD× VCC2×fi× N+ ∑(CL× VCC2×fo) where:= input frequency in MHz;= output frequency in MHz;= output load capacitance in pF;
VCC= supply voltage in V;= number of inputs switching;
∑(CL× VCC2×fo) = sum of outputs.
Ordering information
Table 1: Quick reference dataGND= 0 V; Tamb=25 °C; tr=tf= 6 ns.
tPHL, tPLH propagation delay An to Bn;
Bn to An= 15 pF; VCC= 5 V - 6 - ns input capacitance - 3.5 - pF
CI/O input/output capacitance - 10 - pF
CPD power dissipation
capacitance per transceiver= GND to VCC [1] -26 - pF
Table 2: Ordering information74HC243N −40 °C to +125°C DIP14 plastic dual in-line package; 14 leads (300 mil) SOT27-1
74HC243D −40 °C to +125°C SO14 plastic small outline package; 14 leads;
body width 3.9 mm
SOT108-1
74HC243DB −40 °C to +125°C SSOP14 plastic shrink small outline package; 14 leads;
body width 5.3 mm
SOT337-1
Philips Semiconductors 74HC243 Functional diagram
Philips Semiconductors 74HC243 Pinning information
6.1 Pinning
6.2 Pin description
Table 3: Pin descriptionOEA 1 output enable input (active LOW)
n.c. 2 not connected 3 data input or output 4 data input or output 5 data input or output 6 data input or output
GND 7 ground (0 V) 8 data output or input 9 data output or input 10 data output or input 11 data output or input
n.c. 12 not connected
OEB 13 output enable input
VCC 14 positive supply voltage
Philips Semiconductors 74HC243 Functional description
7.1 Function table[1]H= HIGH voltage level;= LOW voltage level;= high-impedance OFF-state.
Limiting values[1] Above 70 °C: Ptot derates linearly with 12 mW/K.
[2] Above 70 °C: Ptot derates linearly with 8 mW/K.
Table 4: Function table[1] L input B=A Z Z Z Z H A=B input
Table 5: Limiting valuesIn accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to
GND (ground = 0 V).
VCC supply voltage −0.5 +7 V
IIK input diode current VI < −0.5 V or VI >VCC+ 0.5 V - ±20 mA
IOK output diode current VO< −0.5 V or >VCC+ 0.5V ±20 mA output source or sink
current
VO = −0.5 V to VCC+ 0.5V - ±35 mA
ICC, IGND VCC or GND current - ±70 mA
Tstg storage temperature −65 +150 °C
Ptot power dissipation
DIP14 package [1]- 750 mW
SO14 and SSOP16
packages
[2]- 500 mW
Philips Semiconductors 74HC243 Recommended operating conditions
10. Static characteristics
Table 6: Recommended operating conditionsVCC supply voltage 2.0 5.0 6.0 V input voltage 0 - VCC V output voltage 0 - VCC V
tr, tf input rise and fall
times
VCC = 2.0 V - - 1000 ns
VCC = 4.5 V - 6.0 500 ns
VCC = 6.0 V - - 400 ns
Tamb ambient
temperature
−40 - +125 °C
Table 7: Static characteristicsAt recommended operating conditions; voltages are referenced to GND (ground=0V).
Tamb =25°C
VIH HIGH-level input voltage VCC= 2.0V 1.5 1.2 - V
VCC= 4.5V 3.15 2.4 - V
VCC= 6.0V 4.2 3.2 - V
VIL LOW-level input voltage VCC= 2.0V - 0.8 0.5 V
VCC= 4.5V - 2.1 1.35 V
VCC= 6.0V - 2.8 1.8 V
VOH HIGH-level output voltage VI =VIHorVIL= −20 μA; VCC= 2.0V 1.9 2.0 - V= −20 μA; VCC= 4.5V 4.4 4.5 - V= −20 μA; VCC= 6.0V 5.9 6.0 - V= −6.0 mA; VCC= 4.5V 3.98 4.32 - V= −7.8 mA; VCC= 6.0V 5.48 5.81 - V
VOL LOW-level output voltage VI =VIHorVIL =20 μA; VCC= 2.0V - 0 0.1 V =20 μA; VCC= 4.5V - 0 0.1 V =20 μA; VCC= 6.0V - 0 0.1 V= 6.0 mA; VCC= 4.5V - 0.15 0.26 V= 7.8 mA; VCC= 6.0V - 0.16 0.26 V
ILI input leakage current VI =VCCor GND; VCC= 6.0V - - ±0.1 μA
IOZ 3-state OFF-state current VI =VIHor VIL; VCC= 6.0V; =VCCor GND ±0.5 μA
ICC quiescent supply current VI =VCCor GND; IO =0A;
VCC= 6.0V - 8.0 μA input capacitance - 3.5 - pF
CI/O input/output capacitance - 10 - pF
Philips Semiconductors 74HC243
Tamb= −40 °C to +85°C
VIH HIGH-level input voltage VCC= 2.0V 1.5 - - V
VCC= 4.5V 3.15 - - V
VCC= 6.0V 4.2 - - V
VIL LOW-level input voltage VCC= 2.0V - - 0.5 V
VCC= 4.5V - - 1.35 V
VCC= 6.0V - - 1.8 V
VOH HIGH-level output voltage VI =VIHorVIL= −20 μA; VCC= 2.0V 1.9 - - V= −20 μA; VCC= 4.5V 4.4 - - V= −20 μA; VCC= 6.0V 5.9 - - V= −6.0 mA; VCC= 4.5V 3.84 - - V= −7.8 mA; VCC= 6.0V 5.34 - - V
VOL LOW-level output voltage VI =VIHorVIL =20 μA; VCC= 2.0V - - 0.1 V =20 μA; VCC= 4.5V - - 0.1 V =20 μA; VCC= 6.0V - - 0.1 V= 6.0 mA; VCC= 4.5V - - 0.33 V= 7.8 mA; VCC= 6.0V - - 0.33 V
ILI input leakage current VI =VCCor GND; VCC= 6.0V - - ±1.0 μA
IOZ 3-state OFF-state current VI =VIHor VIL; VCC= 6.0V; =VCCor GND ±5.0 μA
ICC quiescent supply current VI =VCCor GND; IO =0A;
VCC= 6.0V
--80 μA
Tamb= −40 °C to +125°C
VIH HIGH-level input voltage VCC= 2.0V 1.5 - - V
VCC= 4.5V 3.15 - - V
VCC= 6.0V 4.2 - - V
VIL LOW-level input voltage VCC= 2.0V - - 0.5 V
VCC= 4.5V - - 1.35 V
VCC= 6.0V - - 1.8 V
VOH HIGH-level output voltage VI =VIHorVIL -= −20 μA; VCC= 2.0V 1.9 - - V= −20 μA; VCC= 4.5V 4.4 - - V= −20 μA; VCC= 6.0V 5.9 - - V= −6.0 mA; VCC= 4.5V 3.7 - - V= −7.8 mA; VCC= 6.0V 5.2 - - V
Table 7: Static characteristics …continuedAt recommended operating conditions; voltages are referenced to GND (ground=0V).
Philips Semiconductors 74HC243
11. Dynamic characteristicsVOL LOW-level output voltage VI =VIHorVIL - =20 μA; VCC= 2.0V - - 0.1 V =20 μA; VCC= 4.5V - - 0.1 V =20 μA; VCC= 6.0V - - 0.1 V= 6.0 mA; VCC= 4.5V - - 0.4 V= 7.8 mA; VCC= 6.0V - - 0.4 V
ILI input leakage current VI =VCCor GND; VCC= 6.0V - - ±1.0 μA
IOZ 3-state OFF-state current VI =VIHor VIL; VCC= 6.0V; =VCCor GND ±10.0 μA
ICC quiescent supply current VI =VCCor GND; IO =0A;
VCC= 6.0V - 160 μA
Table 7: Static characteristics …continuedAt recommended operating conditions; voltages are referenced to GND (ground=0V).
Table 8: Dynamic characteristicsGND= 0 V; tr=tf= 6 ns; CL= 50 pF; RL= 1000 Ω; see Figure8.
Tamb = 25°C
tPHL, tPLH propagation delay An to Bn; Bn to An see Figure5
VCC = 2.0 V - 22 90 ns
VCC = 4.5 V - 8 18 ns
VCC = 6.0 V - 6 15 ns
VCC= 5.0V;CL =15pF - 6 - ns
tPZH, tPZL 3-state output enable time OEA to An or Bn;
OEB to An or Bn
see Figure 6 and7
VCC = 2.0 V - 50 150 ns
VCC = 4.5 V - 18 30 ns
VCC = 6.0 V - 14 26 ns
tPHZ, tPLZ 3-state output disable time OEA to An or Bn;
OEB to An or Bn
see Figure 6 and7
VCC = 2.0 V - 61 165 ns
VCC = 4.5 V - 22 33 ns
VCC = 6.0 V - 18 28 ns
tTHL, tTLH output transition time see Figure5
VCC = 2.0 V - 14 60 ns
VCC = 4.5 V - 5 12 ns
VCC = 6.0 V - 4 10 ns
CPD power dissipation capacitance per transceiver VI= GND to VCC [1] -26 - pF
Tamb = −40 °C to +85°C
tPHL, tPLH propagation delay An to Bn; Bn to An see Figure5
VCC = 2.0 V - - 115 ns
VCC = 4.5 V - - 23 ns
VCC = 6.0 V - - 20 ns
Philips Semiconductors 74HC243[1] CPD is used to determine the dynamic power dissipation (PD in μW). =CPD× VCC2×fi× N+ ∑(CL× VCC2×fo) where:= input frequency in MHz;= output frequency in MHz;= output load capacitance in pF;
VCC= supply voltage in V;= number of inputs switching;
∑(CL× VCC2×fo) = sum of outputs.
tPZH, tPZL 3-state output enable time OEA to An or Bn;
OEB to An or Bn
see Figure 6 and7
VCC = 2.0 V - - 190 ns
VCC = 4.5 V - - 38 ns
VCC = 6.0 V - - 33 ns
tPHZ, tPLZ 3-state output disable time OEA to An or Bn;
OEB to An or Bn
see Figure 6 and7
VCC = 2.0 V - - 205 ns
VCC = 4.5 V - - 41 ns
VCC = 6.0 V - - 35 ns
tTHL, tTLH output transition time see Figure5
VCC = 2.0 V - - 75 ns
VCC = 4.5 V - - 15 ns
VCC = 6.0 V - - 13 ns
Tamb = −40 °C to +125°C
tPHL, tPLH propagation delay An to Bn; Bn to An see Figure5
VCC = 2.0 V - - 135 ns
VCC = 4.5 V - - 27 ns
VCC = 6.0 V - - 23 ns
tPZH, tPZL 3-state output enable time OEA to An or Bn;
OEB to An or Bn
see Figure 6 and7
VCC = 2.0 V - - 225 ns
VCC = 4.5 V - - 45 ns
VCC = 6.0 V - - 38 ns
tPHZ, tPLZ 3-state output disable time OEA to An or Bn;
OEB to An or Bn
see Figure 6 and7
VCC = 2.0 V - - 250 ns
VCC = 4.5 V - - 50 ns
VCC = 6.0 V - - 43 ns
tTHL, tTLH output transition time see Figure5
VCC = 2.0 V - - 90 ns
VCC = 4.5 V - - 18 ns
VCC = 6.0 V - - 15 ns
Table 8: Dynamic characteristics …continuedGND= 0 V; tr=tf= 6 ns; CL= 50 pF; RL= 1000 Ω; see Figure8.