74HC1GU04GW ,InverterLogic diagram74HC1GU04NXP SemiconductorsInverter6. Pinning information6.1 Pinning74HC1GU04n.c. 1 5 ..
74HC20D ,74HC/HCT20; Dual 4-input NAND gateLogic diagram5. Pinning information5.1 Pinning ..
74HC20DB ,Dual 4-input NAND gateFEATURES• Output capability: standard• I category: SSICC
74HC20N ,74HC/HCT20; Dual 4-input NAND gateINTEGRATED CIRCUITSDATA SHEETFor a complete data sheet, please also download:• The IC06 74HC/HCT/HC ..
74HC21D ,Dual 4-input AND gatePin configuration SOT337-1 and SOT402-174HC21 All information provided in this document is subject ..
74HC21DB ,Dual 4-input AND gatePin configuration SOT27-1 and SOT108-1 Fig 6.
74LVC1G126GW ,Bus buffer/line driver; 3-stateLogic diagram74LVC1G126 All information provided in this document is subject to legal disclaimers. ..
74LVC1G157GF ,Single 2-input multiplexerFeatures and benefits Wide supply voltage range from 1.65 V to 5.5 V High noise immunity Complie ..
74LVC1G157GW ,Single 2-input multiplexerGeneral descriptionThe 74LVC1G157 is a single 2-input multiplexer which select data from two data i ..
74LVC1G175DCKRG4 ,Single D-Type Flip-Flop with Asynchronous Clear 6-SC70 -40 to 125Maximum Ratings(1)over operating free-air temperature range (unless otherwise noted)MIN MAX UNITV S ..
74LVC1G175GM ,Single D-type flip-flop with reset; positive-edge triggerFeatures and benefits Wide supply voltage range from 1.65 V to 5.5 V 5 V tolerant inputs for inte ..
74LVC1G175GW ,Single D-type flip-flop with reset; positive-edge triggerapplications using I . The I OFF OFFcircuitry disables the output, preventing the damaging backflow ..
74HC1GU04GW
Inverter
General descriptionThe 74HC1GU04 is a high-speed Si-gate CMOS device. It provides an inverting single
stage function. The standard output currents are half those of the 74HCU04.
Features Symmetrical output impedance Wide operating voltage range from 2.0 Vto 6.0V Low power dissipation Balanced propagation delays SOT353-1 and SOT753 package options
Ordering information Marking Functional diagram
74HC1GU04
Inverter
Rev. 05 — 10 July 2007 Product data sheet
Table 1. Ordering information74HC1GU04GW −40 °C to +125°C TSSOP5 plastic thin shrink small outline package; leads; body width 1.25 mm
SOT353-1
74HC1GU04GV −40 °C to +125°C SC-74A plastic surface-mounted package; 5 leads SOT753
Table 2. Marking codes74HC1GU04GW HD
74HC1GU04GV HU4
NXP Semiconductors 74HC1GU04
Inverter Pinning information
6.1 Pinning
6.2 Pin description Functional description
Table 3. Pin descriptionn.c. 1 not connected 2 data input
GND 3 ground (0 V) 4 data output
VCC 5 supply voltage
Table 4. Function tableH = HIGH voltage level; L = LOW voltage level
NXP Semiconductors 74HC1GU04
Inverter Limiting values[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
[2] Above 55 °C the value of Ptot derates linearity with 2.5 mW/K.
Recommended operating conditions
10. Static characteristics
Table 5. Limiting valuesIn accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).
VCC supply voltage −0.5 +7.0 V
IIK input clamping current VI< −0.5 V or VI > VCC + 0.5 V [1]- ±20 mA
IOK output clamping current VO < −0.5 V or VO >VCC + 0.5 V [1]- ±20 mA output current −0.5 V < VO < VCC+ 0.5 V [1]- ±12.5 mA
ICC supply current - 25 mA
IGND ground current −25 - mA
Tstg storage temperature −65 +150 °C
Ptot total power dissipation Tamb = −40°Cto +125°C [2]- 200 mW
Table 6. Recommended operating conditionsVoltages are referenced to GND (ground = 0 V).
VCC supply voltage 2.0 5.0 6.0 V input voltage 0 - VCC V output voltage 0 - VCC V
Tamb ambient temperature −40 +25 +125 °C
Δt/ΔV input transition rise and fall
rate
VCC = 2.0 V - - 625 ns/V
VCC = 4.5 V - - 139 ns/V
VCC = 6.0 V - - 83 ns/V
Table 7. Static characteristicsVoltages are referenced to GND (ground = 0 V). All typical values are measured at Tamb =25 °C.
VIH HIGH-level input
voltage
VCC = 2.0 V 1.7 1.4 - 1.7 - V
VCC = 4.5 V 3.6 2.6 - 3.6 - V
VCC = 6.0 V 4.8 3.4 - 4.8 - V
VIL LOW-level input
voltage
VCC = 2.0 V - 0.6 0.3 - 0.3 V
VCC = 4.5 V - 1.9 0.9 - 0.9 V
VCC = 6.0 V - 2.6 1.2 - 1.2 V
NXP Semiconductors 74HC1GU04
Inverter
11. Dynamic characteristics[1] tpd is the same as tPLH and tPHL.
[2] CPD is used to determine the dynamic power dissipation PD (μW). =CPD× VCC2×fi+∑(CL× VCC2×fo) where:= input frequency in MHz;= output frequency in MHz;= output load capacitance in pF;
VCC= supply voltage in Volts.
VOH HIGH-level output
voltage = VIH or VIL= −20 μA; VCC= 2.0V 1.8 2.0 - 1.8 - V= −20 μA; VCC= 4.5V 4.0 4.5 - 4.0 - V= −20 μA; VCC= 6.0V 5.5 6.0 - 5.5 - V= −2.0 mA; VCC= 4.5V 4.13 4.32 - 3.7 - V= −2.6 mA; VCC= 6.0V 5.63 5.81 - 5.2 - V
VOL LOW-level output
voltage = VIH or VIL = 20 μA; VCC= 2.0V - 0 0.2 - 0.2 V = 20 μA; VCC= 4.5V - 0 0.5 - 0.5 V = 20 μA; VCC= 6.0V - 0 0.5 - 0.5 V = 2.0 mA; VCC= 4.5V - 0.15 0.33 - 0.4 V = 2.6 mA; VCC= 6.0V - 0.16 0.33 - 0.4 V input leakage current VI =VCCor GND; VCC= 6.0V - - 1.0 - 1.0 μA
ICC supply current VI =VCCor GND; IO =0A;
VCC= 6.0V - 10 - 20 μA input capacitance - 5 - - - pF
Table 7. Static characteristics …continuedVoltages are referenced to GND (ground = 0 V). All typical values are measured at Tamb =25 °C.
Table 8. Dynamic characteristicsGND = 0 V; tr = tf = 6.0 ns; For test circuit see Figure 6. All typical values are measured at Tamb = 25 °C.
tpd propagation delayAto Y; see Figure5 [1]
VCC = 2.0 V; CL=50pF - 10 90 - 105 ns
VCC = 4.5 V; CL =50pF - 7 18 - 21 ns
VCC = 6.0 V; CL =50pF - 6 15 - 18 ns
VCC = 5.0 V; CL =15pF - 5 - - - ns
CPD power dissipation
capacitance= GNDto VCC [2] -14- - - pF
NXP Semiconductors 74HC1GU04
Inverter
12. Waveforms
13. Typical transfer characteristics
NXP Semiconductors 74HC1GU04
Inverter
14. Application informationSome applications are:
Linear amplifier (see Figure 11)
In crystal oscillator design (see Figure 12)
Remark: All values given are typical unless otherwise specified