74HC1G14GV ,74HC1G14; 74HCT1G14; Inverting Schmitt-triggersFeatures and benefits Symmetrical output impedance High noise immunity Low power dissipation Ba ..
74HC1G14GW ,Inverting Schmitt triggerPin configuration7.2 Pin description Table 3. Pin descriptionSymbol Pin Descriptionn.c. 1 not conne ..
74HC1G32GV ,2-input OR gatePin configuration. Fig.2 Logic symbol.handbook, halfpageB1handbook, halfpage≥14Y2MNA165 AMNA166Fig ..
74HC1G32GW ,2-input OR gateFeaturesn Symmetrical output impedancen High noise immunityn Low power dissipationn Balanced propag ..
74HC1G66GV ,Single-pole single-throw analog switchPin configuration. Fig.2 Logic symbol.Yhandbook, halfpageE1handbook, halfpage121V V4 #CC CCX1MNA ..
74HC1G66GW ,Bilateral switchINTEGRATED CIRCUITSDATA SHEET74HC1G66; 74HCT1G66Bilateral switch1998 Aug 03Product specificationFile ..
74LVC1G125DBVRE4 ,Single Bus Buffer Gate With 3-State Outputs 5-SOT-23 -40 to 125Maximum Ratings . 411 Power Supply Recommendations... 127.2 Handling Ratings. 412 Layout.... 127.3 ..
74LVC1G125FZ4-7 , SINGLE BUFFER GATE WITH 3-STATE OUTPUT
74LVC1G125GF ,Bus buffer/line driver; 3-stateLogic diagram74LVC1G125 All information provided in this document is subject to legal disclaimers. ..
74LVC1G125GM ,74LVC1G125; Bus buffer/line driver; 3-stateFEATURES DESCRIPTION• Wide supply voltage range from 1.65 V to 5.5 V The 74LVC1G125 is a high-perfo ..
74LVC1G125GM ,74LVC1G125; Bus buffer/line driver; 3-stateFeatures and benefits Wide supply voltage range from 1.65 V to 5.5 V High noise immunity Complie ..
74LVC1G125GV ,Bus buffer/line driver; 3-statePin configuration SOT886 74LVC1G12574LVC1G125OE 1 5 VCCOE 1 6 VCC3GNDA 2 5 n.c.A 2 4 YGND 3 4 Y001a ..
74HC1G14GV-74HC1G14GW-74HCT1G14GW
Inverting Schmitt trigger
1. General description74HC1G14 and 74HCT1G14 are high-speed Si-gate CMOS devices. They provide an
inverting buffer function with Schmitt trigger action. These devices are capable of
transforming slowly changing input signals into sharply defined, jitter-free output signals.
The HC device has CMOS input switching levels and supply voltage range 2 V to 6 V.
The HCT device has TTL input switching levels and supply voltage range 4.5 V to 5.5 V.
The standard output currents are half of those of the 74HC14 and 74HCT14.
2. Features and benefits Symmetrical output impedance High noise immunity Low power dissipation Balanced propagation delays SOT353-1 and SOT753 package options Specified from 40 Cto +125 C
3. Applications Wave and pulse shapers Astable multivibrators Monostable multivibrators
4. Ordering information
74HC1G14; 74HCT1G14
Inverting Schmitt trigger
Rev. 6 — 27 December 2012 Product data sheet
Table 1. Ordering information74HC1G14GW 40 C to +125 C TSSOP5 plastic thin shrink small outline package; leads; body width 1.25 mm
SOT353-1
74HCT1G14GW
74HC1G14GV 40 C to +125 C SC-74A plastic surface-mounted package; 5 leads SOT753
74HCT1G14GV
NXP Semiconductors 74HC1G14; 74HCT1G14
Inverting Schmitt trigger
5. Marking[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.
6. Functional diagram
7. Pinning information
7.1 Pinning
7.2 Pin description
Table 2. Marking codes74HC1G14GW HF
74HCT1G14GW TF
74HC1G14GV H14
74HCT1G14GV T14
Table 3. Pin descriptionn.c. 1 not connected 2 data input
GND 3 ground (0 V) 4 data output
VCC 5 supply voltage
NXP Semiconductors 74HC1G14; 74HCT1G14
Inverting Schmitt trigger
8. Functional description
9. Limiting values[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
[2] Above 55 C, the value of Ptot derates linearly with 2.5 mW/K.
10. Recommended operating conditions
Table 4. Function tableH = HIGH voltage level; L = LOW voltage level
Table 5. Limiting valuesIn accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V). [1]
VCC supply voltage 0.5 +7.0 V
IIK input clamping current VI < 0.5 V or VI >VCC + 0.5V - 20 mA
IOK output clamping current VO< 0.5 V or VO >VCC + 0.5V - 20 mA output current 0.5 V < VO
ICC supply current - 25 mA
IGND ground current 25 - mA
Tstg storage temperature 65 +150 C
Ptot total power dissipation Tamb = 40Cto +125 C [2]- 200 mW
Table 6. Recommended operating conditions
Voltages are referenced to GND (ground = 0 V).
VCC supply voltage 2.0 5.0 6.0 4.5 5.0 5.5 V input voltage 0 - VCC 0- VCC V output voltage 0 - VCC 0- VCC V
Tamb ambient temperature 40 +25 +125 40 +25 +125 C
NXP Semiconductors 74HC1G14; 74HCT1G14
Inverting Schmitt trigger
11. Static characteristicsTable 7. Static characteristics
Voltages are referenced to GND (ground = 0 V). All typical values are measured at Tamb =25 C.
For type 74HC1G14
VOH HIGH-level output
voltage = VT+ or VT = 20 A; VCC= 2.0V 1.9 2.0 - 1.9 - V = 20 A; VCC= 4.5V 4.4 4.5 - 4.4 - V = 20 A; VCC= 6.0V 5.9 6.0 - 5.9 - V = 2.0 mA; VCC=4.5V 4.13 4.32 - 3.7 - V = 2.6 mA; VCC=6.0V 5.63 5.81 - 5.2 - V
VOL LOW-level output
voltage = VT+ or VT = 20 A; VCC= 2.0V - 0 0.1 - 0.1 V = 20 A; VCC= 4.5V - 0 0.1 - 0.1 V = 20 A; VCC= 6.0V - 0 0.1 - 0.1 V = 2.0 mA; VCC= 4.5V - 0.15 0.33 - 0.4 V = 2.6 mA; VCC= 6.0V - 0.16 0.33 - 0.4 V input leakage current VI =VCCor GND; VCC= 6.0V - - 1.0 - 1.0 A
ICC supply current VI =VCCor GND; IO =0A;
VCC =6.0V 10 - 20 A input capacitance - 1.5 - - - pF
VT+ positive-going
threshold voltage
see Figure 7 and Figure8
VCC= 2.0 V 0.7 1.09 1.5 0.7 1.5 V
VCC= 4.5 V 1.7 2.36 3.15 1.7 3.15 V
VCC= 6.0 V 2.1 3.12 4.2 2.1 4.2 V
VT negative-going
threshold voltage
see Figure 7 and Figure8
VCC= 2.0 V 0.3 0.60 0.9 0.3 0.9 V
VCC= 4.5 V 0.9 1.53 2.0 0.9 2.0 V
VCC= 6.0 V 1.2 2.08 2.6 1.2 2.6 V hysteresis voltage see Figure 7 and Figure8
VCC= 2.0 V 0.2 0.48 1.0 0.2 1.0 V
VCC= 4.5 V 0.4 0.83 1.4 0.4 1.4 V
VCC= 6.0 V 0.6 1.04 1.6 0.6 1.6 V
For type 74HCT1G14
VOH HIGH-level output
voltage = VT+ or VT = 20 A; VCC= 4.5V 4.4 4.5 - 4.4 - V = 2.0 mA; VCC=4.5V 4.13 4.32 - 3.7 - V
VOL LOW-level output
voltage = VT+ or VT = 20 A; VCC= 4.5V - 0 0.1 - 0.1 V = 2.0 mA; VCC= 4.5V - 0.15 0.33 - 0.4 V input leakage current VI =VCCor GND; VCC= 5.5V - - 1.0 - 1.0 A
NXP Semiconductors 74HC1G14; 74HCT1G14
Inverting Schmitt trigger
12. Dynamic characteristics
[1] tpd is the same as tPLH and tPHL.
[2] CPD is used to determine the dynamic power dissipation PD (W). =CPD VCC2fi+(CL VCC2 fo)where:= input frequency in MHz; fo= output frequency in MHz= output load capacitance in pF; VCC= supply voltage in Volts(CL VCC2 fo) = sum of outputs
ICC supply current VI =VCCor GND; IO =0A;
VCC =5.5V 10 - 20 A
ICC additional supply
current
per input; VCC= 4.5Vto 5.5V;
VI = VCC 2.1 V; IO =0A - 500 - 850 A input capacitance - 1.5 - - - pF
VT+ positive-going
threshold voltage
see Figure 7 and Figure8
VCC= 4.5 V 1.2 1.55 1.9 1.2 1.9 V
VCC= 5.5 V 1.4 1.80 2.1 1.4 2.1 V
VT negative-going
threshold voltage
see Figure 7 and Figure8
VCC= 4.5 V 0.5 0.76 1.2 0.5 1.2 V
VCC= 5.5 V 0.6 0.90 1.4 0.6 1.4 V hysteresis voltage see Figure 7 and Figure8
VCC= 4.5 V 0.4 0.80 - 0.4 - V
VCC= 5.5 V 0.4 0.90 - 0.4 - V
Table 7. Static characteristics …continued
Voltages are referenced to GND (ground = 0 V). All typical values are measured at Tamb =25 C.
Table 8. Dynamic characteristics
GND = 0 V; tr = tf 6.0 ns; All typical values are measured at Tamb =25 C. For test circuit see Figure6
For type 74HC1G14
tpd propagation delayAto Y; see Figure5 [1]
VCC = 2.0 V; CL=50pF - 25 155 - 190 ns
VCC = 4.5 V; CL =50pF - 12 31 - 38 ns
VCC = 5.0 V; CL =15pF - 10 - - - ns
VCC = 6.0 V; CL =50pF - 11 26 - 32 ns
CPD power dissipation
capacitance =GNDto VCC [2] -20- - - pF
For type 74HCT1G14
tpd propagation delayAto Y; see Figure5 [1]
VCC = 4.5 V; CL =50pF - 17 43 - 51 ns
VCC = 5.0 V; CL =15pF - 15 - - - ns
CPD power dissipation
capacitance =GNDto VCC 1.5V [2] -22- - - pF
NXP Semiconductors 74HC1G14; 74HCT1G14
Inverting Schmitt trigger
13. Waveforms
Table 9. Measurement points
74HC1G14 GND to VCC 0.5 VCC 0.5 VCC
74HCT1G14 GND to 3.0 V 1.5 V 0.5 VCC
NXP Semiconductors 74HC1G14; 74HCT1G14
Inverting Schmitt trigger
14. Transfer characteristics waveforms
NXP Semiconductors 74HC1G14; 74HCT1G14
Inverting Schmitt trigger
15. Application information
The slow input rise and fall times cause additional power dissipation, this can be
calculated using the following formula:
Padd =fi(tr ICC(AV) +tf ICC(AV)) VCC
Where: