IC Phoenix
 
Home ›  7714 > 74HC1G125GV-74HCT1G125GV,74HC1G125; 74HCT1G125; Bus buffer/line drivers; 3-state
74HC1G125GV-74HCT1G125GV Fast Delivery,Good Price
Part Number:
If you need More Quantity or Better Price,Welcom Any inquiry.
We available via phone +865332716050 Email
Partno Mfg Dc Qty AvailableDescript
74HC1G125GVNXP/PHILIPSN/a3000avai74HC1G125; 74HCT1G125; Bus buffer/line drivers; 3-state
74HCT1G125GVNXP/PHILIPSN/a3000avai74HC1G125; 74HCT1G125; Bus buffer/line drivers; 3-state


74HC1G125GV ,74HC1G125; 74HCT1G125; Bus buffer/line drivers; 3-stateFeatures■ Wide supply voltage range from 2.0 V to 6.0 V■ Symmetrical output impedance■ High noise i ..
74HC1G125GW ,Bus buffer/line driver; 3-statePin configuration. Fig.2 Logic symbol.handbook, halfpageoutYinA2handbook, halfpage41OEOEMNA119MNA1 ..
74HC1G126GV ,Bus buffer/line driver; 3-stateFeaturesn Symmetrical output impedancen High noise immunityn Low power dissipationn Balanced propag ..
74HC1G126GW ,Bus buffer/line driver; 3-statePin configuration. Fig.2 Logic symbol.outYinA241OEOEFig.3 IEC logic symbol. Fig.4
74HC1G14GV ,74HC1G14; 74HCT1G14; Inverting Schmitt-triggersFeatures and benefits Symmetrical output impedance High noise immunity Low power dissipation Ba ..
74HC1G14GW ,Inverting Schmitt triggerPin configuration7.2 Pin description Table 3. Pin descriptionSymbol Pin Descriptionn.c. 1 not conne ..
74LVC1G10GW ,Single 3-input NAND gateFeatures and benefits Wide supply voltage range from 1.65 V to 5.5 V High noise immunity Complie ..
74LVC1G10W6-7 , SINGLE 3 INPUT POSITIVE NAND GATE
74LVC1G10W6-7 , SINGLE 3 INPUT POSITIVE NAND GATE
74LVC1G11DW-7 , SINGLE 3 INPUT POSITIVE AND GATE
74LVC1G11GM ,Single 3-input AND gateFeatures and benefits Wide supply voltage range from 1.65 V to 5.5 V 5 V tolerant inputs for inte ..
74LVC1G11GV ,Single 3-input AND gateLogic diagram74LVC1G11 All information provided in this document is subject to legal disclaimers. ..


74HC1G125GV-74HCT1G125GV
Bus buffer/line driver; 3-state
General descriptionThe 74HC1G125; 74HCT1G125 is a high-speed, Si-gate CMOS device.
The 74HC1G125; 74HCT1G125 provides one non-inverting buffer/line driver with 3-state
output. The 3-state output is controlled by the output enable input (pin OE). A HIGH level
at pin OE causes the output to assume a high-impedance OFF-state.
The bus driver output currents are equal compared to the 74HC125 and 74HCT125. Features Wide supply voltage range from 2.0 Vto 6.0V Symmetrical output impedance High noise immunity Low power consumption Balanced propagation delays ESD protection: HBM EIA/JESD22-A114-C exceeds 2000V MM EIA/JESD22-A115-A exceeds 200V Very small 5 pins packages Specified from −40 °Cto+85 °C and −40°Cto +125°C Quick reference data
74HC1G125; 74HCT1G125
Bus buffer/line driver; 3-state
Table 1: Quick reference data

GND=0 V; Tamb =25 °C; tr =tf≤ 6.0 ns.
74HC1G125

tPHL,
tPLH
propagation delayAtoY VCC =5V; CL =15pF - 9 - ns input capacitance - 1.5 - pF
CPD power dissipation
capacitance= GNDto VCC [1] -30 - pF
Philips Semiconductors 74HC1G125; 74HCT1G125
[1] CPD is used to determine the dynamic power dissipation (PD in μW). =CPD× VCC2×fi× N+ Σ(CL× VCC2× fo) where:= input frequency in MHz;= output frequency in MHz;= output load capacitance in pF;
VCC= supply voltage in V;= number of inputs switching;
Σ(CL× VCC2×fo)= sum of the outputs. Ordering information Marking
74HCT1G125

tPHL,
tPLH
propagation delayAtoY VCC =5V; CL =15pF - 10 - ns input capacitance - 1.5 - pF
CPD power dissipation
capacitance= GNDto VCC − 1.5 V [1] -27 - pF
Table 1: Quick reference data …continued

GND=0 V; Tamb =25 °C; tr =tf≤ 6.0 ns.
Table 2: Ordering information
74HC1G125

74HC1G125GW −40 °C to +125°C TSSOP5 plastic thin shrink small outline package; 5 leads;
body width 1.25 mm
SOT353-1
74HC1G125GV −40 °C to +125°C SC-74A plastic surface mounted package; 5 leads SOT753
74HCT1G125

74HCT1G125GW −40 °C to +125°C TSSOP5 plastic thin shrink small outline package; 5 leads;
body width 1.25 mm
SOT353-1
74HCT1G125GV −40 °C to +125°C SC-74A plastic surface mounted package; 5 leads SOT753
Table 3: Marking

74HC1G125GW HM
74HC1G125GV H25
74HCT1G125GW TM
74HCT1G125GV T25
Philips Semiconductors 74HC1G125; 74HCT1G125 Functional diagram Pinning information
7.1 Pinning
7.2 Pin description
Table 4: Pin description
1 output enable input (active LOW) 2 data input
GND 3 ground (0V) 4 data output
VCC 5 supply voltage
Philips Semiconductors 74HC1G125; 74HCT1G125 Functional description
8.1 Function table

[1]H= HIGH voltage level;= LOW voltage level;= don’t care;= high-impedance OFF-state. Limiting values
[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
[2] Above 55 °C the value of Ptot derates linearly with 2.5 mW/K.
Table 5: Function table[1]

LLL H Z
Table 6: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to
GND (ground = 0 V).
VCC supply voltage −0.5 +7.0 V
IIK input clamping current VI< −0.5 V or VI >VCC+ 0.5V [1]- ±20 mA
IOK output clamping current VO< −0.5 V or >VCC+ 0.5V
[1]- ±20 mA output current VO= −0.5 V to (VCC+ 0.5V) [1]- ±35 mA
ICC quiescent supply
current
-70 mA
IGND ground current - −70 mA
Tstg storage temperature −65 +150 °C
Ptot total power dissipation Tamb= −40 °C to +125°C [2]- 200 mW
Philips Semiconductors 74HC1G125; 74HCT1G125
10. Recommended operating conditions
11. Static characteristics
Table 7: Recommended operating conditions
74HC1G125

VCC supply voltage 2.0 5.0 6.0 V input voltage 0 - VCC V output voltage 0 - VCC V
Tamb ambient temperature −40 +25 +125 °C
tr, tf input rise and fall times VCC= 2.0V - - 1000 ns
VCC= 4.5V - - 500 ns
VCC= 6.0V - - 400 ns
74HCT1G125

VCC supply voltage 4.5 5.0 5.5 V input voltage 0 - VCC V output voltage 0 - VCC V
Tamb ambient temperature −40 +25 +125 °C
tr, tf input rise and fall times VCC= 4.5V - - 500 ns
Table 8: Static characteristics 74HC1G125

At recommended operating conditions; voltages are referenced to GND (ground=0V).
Tamb =
−40 °C to +85°C[1]
VIH HIGH-state input voltage VCC = 2.0 V 1.5 1.2 - V
VCC = 4.5 V 3.15 2.4 - V
VCC = 6.0 V 4.2 3.2 - V
VIL LOW-state input voltage VCC = 2.0 V - 0.8 0.5 V
VCC = 4.5 V - 2.1 1.35 V
VCC = 6.0 V - 2.8 1.8 V
VOH HIGH-state output voltage VI = VIH or VIL
IO = −20 μA; VCC = 2.0 V 1.9 2.0 - V
IO = −20 μA; VCC = 4.5 V 4.4 4.5 - V
IO = −20 μA; VCC = 6.0 V 5.9 6.0 - V
IO = −6.0 mA; VCC = 4.5 V 3.84 4.32 - V
IO = −7.8 mA; VCC = 6.0 V 5.34 5.81 - V
VOL LOW-state output voltage VI = VIH or VIL
IO = 20 μA; VCC = 2.0 V - 0 0.1 V
IO = 20 μA; VCC = 4.5 V - 0 0.1 V
IO = 20 μA; VCC = 6.0 V - 0 0.1 V
IO = 6.0 mA; VCC = 4.5 V - 0.15 0.33 V
IO = 7.8 mA; VCC = 6.0 V - 0.16 0.33 V
Philips Semiconductors 74HC1G125; 74HCT1G125
[1] All typical values are measured at Tamb = 25°C.
ILI input leakage current VI = VCC or GND; VCC = 6.0 V - - 1.0 μA
IOZ OFF-state output current VI = VIH or VIL; VO = VCC or GND;
VCC = 6.0 V 5 μA
ICC quiescent supply current VI = VCC or GND; IO =0A;
VCC= 6.0V 10 μA input capacitance - 1.5 - pF
Tamb =
−40 °C to +125°C
VIH HIGH-state input voltage VCC = 2.0 V 1.5 - - V
VCC = 4.5 V 3.15 - - V
VCC = 6.0 V 4.2 - - V
VIL LOW-state input voltage VCC = 2.0 V - - 0.5 V
VCC = 4.5 V - - 1.35 V
VCC = 6.0 V - - 1.8 V
VOH HIGH-state output voltage VI = VIH or VIL
IO = −20 μA; VCC = 2.0 V 1.9 - - V
IO = −20 μA; VCC = 4.5 V 4.4 - - V
IO = −20 μA; VCC = 6.0 V 5.9 - - V
IO = −6.0 mA; VCC = 4.5 V 3.7 - - V
IO = −7.8 mA; VCC = 6.0 V 5.2 - - V
VOL LOW-state output voltage VI = VIH or VIL
IO = 20 μA; VCC = 2.0 V - - 0.1 V
IO = 20 μA; VCC = 4.5 V - - 0.1 V
IO = 20 μA; VCC = 6.0 V - - 0.1 V
IO = 6.0 mA; VCC = 4.5 V - - 0.4 V
IO = 7.8 mA; VCC = 6.0 V - - 0.4 V
ILI input leakage current VI = VCC or GND; VCC = 6.0 V - - 1.0 μA
IOZ OFF-state output current VI = VIH or VIL; VO = VCC or GND;
VCC = 6.0 V 10 μA
ICC quiescent supply current VI = VCC or GND; IO =0A;
VCC= 6.0V 20 μA
Table 8: Static characteristics 74HC1G125 …continued

At recommended operating conditions; voltages are referenced to GND (ground=0V).
Philips Semiconductors 74HC1G125; 74HCT1G125
[1] All typical values are measured at Tamb = 25°C.
Table 9: Static characteristics 74HCT1G125

At recommended operating conditions; voltages are referenced to GND (ground=0V).
Tamb =
−40 °C to +85°C[1]
VIH HIGH-state input voltage VCC = 4.5 V to 5.5V 2.0 1.6 - V
VIL LOW-state input voltage VCC = 4.5 V to 5.5V - 1.2 0.8 V
VOH HIGH-state output voltage VI = VIH or VIL; VCC = 4.5 V
IO = −20μA 4.4 4.5 - V
IO = −6.0 mA 3.84 4.32 - V
VOL LOW-state output voltage VI = VIH or VIL; VCC = 4.5 V
IO = 20μA - 0 0.1 V
IO = 6.0 mA - 0.16 0.33 V
ILI input leakage current VI = VCC or GND; VCC = 5.5 V - - 1.0 μA
IOZ OFF-state output current VI = VIH or VIL; VO = VCC or GND;
VCC = 5.5 V 5 μA
ICC quiescent supply current VI = VCC or GND; IO =0A;
VCC= 6.0V 10 μA
ΔICC additional quiescent supply
current
VI = VCC − 2.1 V; IO =0A;
VCC= 4.5 V to 5.5V - 500 μA input capacitance - 1.5 - pF
Tamb =
−40 °C to +125°C
VIH HIGH-state input voltage VCC = 4.5 V to 5.5V 2.0 - - V
VIL LOW-state input voltage VCC = 4.5 V to 5.5V - - 0.8 V
VOH HIGH-state output voltage VI = VIH or VIL; VCC = 4.5 V
IO = −20μA 4.4 - - V
IO = −6.0 mA 3.7 - - V
VOL LOW-state output voltage VI = VIH or VIL; VCC = 4.5 V
IO = 20μA - - 0.1 V
IO = 6.0 mA - - 0.4 V
ILI input leakage current VI = VCC or GND; VCC = 5.5 V - - 1.0 μA
IOZ OFF-state output current VI = VIH or VIL; VO = VCC or GND;
VCC = 5.5 V 10 μA
ICC quiescent supply current VI = VCC or GND; IO =0A;
VCC= 6.0V 20 μA
ΔICC additional quiescent supply
current
VI = VCC − 2.1 V; IO =0A;
VCC= 4.5 V to 5.5V - 850 μA
Philips Semiconductors 74HC1G125; 74HCT1G125
12. Dynamic characteristics

[1] All typical values are measured at Tamb = 25°C.
[2] CPD is used to determine the dynamic power dissipation (PD in μW). =CPD× VCC2×fi× N+ Σ(CL× VCC2× fo) where:= input frequency in MHz;= output frequency in MHz;= output load capacitance in pF;
VCC= supply voltage in V;= number of inputs switching;
Σ(CL× VCC2×fo)= sum of the outputs.
Table 10: Dynamic characteristics 74HC1G125

Voltages are referenced to GND (ground=0 V); CL=50 pF unless otherwise specified; for test
circuit see Figure8
Tamb =
−40 °C to +85°C[1]
tPHL,
tPLH
propagation delay A to Y see Figure6
VCC = 2.0 V - 24 125 ns
VCC = 4.5 V - 10 25 ns
VCC =5V; =15pF - ns
VCC = 6.0 V - 8 21 ns
tPZH,
tPZL
3-state output enable timetoY
see Figure7
VCC = 2.0 V - 19 155 ns
VCC = 4.5 V - 9 31 ns
VCC = 6.0 V - 7 26 ns
tPHZ,
tPLZ
3-state output disable timetoY
see Figure7
VCC = 2.0 V - 18 155 ns
VCC = 4.5 V - 12 31 ns
VCC = 6.0 V - 11 26 ns
CPD power dissipation
capacitance= GND to VCC [2] -30 - pF
Tamb =
−40 °C to +125°C
tPHL,
tPLH
propagation delay A to Y see Figure6
VCC = 2.0 V - - 150 ns
VCC = 4.5 V - - 30 ns
VCC = 6.0 V - - 26 ns
tPZH,
tPZL
3-state output enable timetoY
see Figure7
VCC = 2.0 V - - 190 ns
VCC = 4.5 V - - 38 ns
VCC = 6.0 V - - 32 ns
tPHZ,
tPLZ
3-state output disable timetoY
see Figure7
VCC = 2.0 V - - 190 ns
VCC = 4.5 V - - 38 ns
VCC = 6.0 V - - 32 ns
ic,good price


TEL:86-533-2716050      FAX:86-533-2716790
   

©2020 IC PHOENIX CO.,LIMITED