IC Phoenix
 
Home ›  7717 > 74HC1G04GV-74HC1G04GW-74HCT1G04GV-74HCT1G04GW,74HC1G04; 74HCT1G04; Inverter
74HC1G04GV-74HC1G04GW-74HCT1G04GV-74HCT1G04GW Fast Delivery,Good Price
Part Number:
If you need More Quantity or Better Price,Welcom Any inquiry.
We available via phone +865332716050 Email
Partno Mfg Dc Qty AvailableDescript
74HC1G04GVTIN/a75avaiInverter
74HC1G04GVNXP N/a15659avaiInverter
74HC1G04GWNXP/PHILIPSN/a3000avaiInverter
74HCT1G04GVNXPN/a33000avai74HC1G04; 74HCT1G04; Inverter
74HCT1G04GWNXPN/a31200avaiInverter


74HCT1G04GV ,74HC1G04; 74HCT1G04; InverterPin configuration6.2 Pin description Table 3. Pin descriptionSymbol Pin Descriptionn.c. 1 not conne ..
74HCT1G04GW ,InverterGeneral descriptionThe 74HC1G04; 74HCT1G04 is a single inverter. Inputs include clamp diodes that e ..
74HCT1G08GV ,2-input AND gate
74HCT1G08GV ,2-input AND gate74HC1G08; 74HCT1G082-input AND gateRev. 04 — 17 July 2007 Product data sheet1.
74HCT1G08GW ,2-input AND gateLimiting valuesTable 5.
74HCT1G125GV ,74HC1G125; 74HCT1G125; Bus buffer/line drivers; 3-stateGeneral descriptionThe 74HC1G125; 74HCT1G125 is a high-speed, Si-gate CMOS device.The 74HC1G125; 74 ..
74VHC175MTCX ,Quad D-Type Flip-FlopGeneral Descriptionand two supply systems such as battery backup. This cir-The VHC175 is an advance ..
74VHC175N ,Quad D-Type Flip-FlopGeneral Descriptionand two supply systems such as battery backup. This cir-The VHC175 is an advance ..
74VHC175SJ ,Quad D-Type Flip-FlopFunctional Description Truth TableThe VHC175 consists of four edge-triggered D flip-flopsInputs Out ..
74VHC221A ,Dual Non-Retriggerable Monostable Multivibrator
74VHC221A ,Dual Non-Retriggerable Monostable Multivibrator
74VHC221A ,Dual Non-Retriggerable Monostable Multivibratorfeatures both a nega-tive, A, and a positive, B, transition triggered input, either of


74HC1G04GV-74HC1G04GW-74HCT1G04GV-74HCT1G04GW
Inverter
1. General description
The 74HC1G04; 74HCT1G04 is a single inverter. Inputs include clamp diodes that enable
the use of current limiting resistors to interface inputs to voltages in excess of VCC.
2. Features and benefits
Wide supply voltage range from 2.0 Vto 6.0V Input levels: For 74HC1G04: CMOS level For 74HCT1G04: TTL level Symmetrical output impedance High noise immunity Low power dissipation Balanced propagation delays ESD protection: HBM JESD22-A114E exceeds 2000V MM JESD22-A115-A exceeds 200V Multiple package options Specified from 40 C to +85 C and 40 C to +125 C
3. Ordering information

74HC1G04; 74HCT1G04
Inverter
Rev. 5 — 25 September 2013 Product data sheet
Table 1. Ordering information

74HC1G04GW 40 C to +125 C TSSOP5 plastic thin shrink small outline package; 5 leads;
body width 1.25 mm
SOT353-1
74HCT1G04GW
74HC1G04GV 40 C to +125 C SC-74A plastic surface-mounted package; 5 leads SOT753
74HCT1G04GV
NXP Semiconductors 74HC1G04; 74HCT1G04
Inverter
4. Marking

[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.
5. Functional diagram

6. Pinning information
6.1 Pinning
6.2 Pin description

Table 2. Marking codes

74HC1G04GW HC
74HCT1G04GW TC
74HC1G04GV H04
74HCT1G04GV T04
Table 3. Pin description

n.c. 1 not connected 2 data input
GND 3 ground (0 V) 4 data output
VCC 5 supply voltage
NXP Semiconductors 74HC1G04; 74HCT1G04
Inverter
7. Functional description

8. Limiting values

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
[2] Above 55 C, the value of Ptot derates linearly with 2.5 mW/K.
9. Recommended operating conditions

Table 4. Function table
= HIGH voltage level; L= LOW voltage level
Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V). [1]
VCC supply voltage 0.5 +7.0 V
IIK input clamping current VI < 0.5 V or VI >VCC + 0.5V - 20 mA
IOK output clamping current VO< 0.5 V or VO >VCC + 0.5V - 20 mA output current 0.5 V < VO ICC supply current - 25 mA
IGND ground current 25 - mA
Tstg storage temperature 65 +150 C
Ptot total power dissipation Tamb = 40Cto +125 C [2]- 200 mW
Table 6. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V).
VCC supply voltage 2.0 5.0 6.0 4.5 5.0 5.5 V input voltage 0 - VCC 0- VCC V output voltage 0 - VCC 0- VCC V
Tamb ambient temperature 40 +25 +125 40 +25 +125 C
t/V input transition rise
and fall rate
VCC = 2.0 V - - 625 - - - ns/V
VCC = 4.5 V - - 139 - - 139 ns/V
VCC = 6.0 V - - 83 - - - ns/V
NXP Semiconductors 74HC1G04; 74HCT1G04
Inverter
10. Static characteristics
Table 7. Static characteristics
Voltages are referenced to GND (ground = 0 V). All typical values are measured at Tamb =25 C.
For type 74HC1G04

VIH HIGH-level input
voltage
VCC = 2.0 V 1.5 1.2 - 1.5 - V
VCC = 4.5 V 3.15 2.4 - 3.15 - V
VCC = 6.0 V 4.2 3.2 - 4.2 - V
VIL LOW-level input
voltage
VCC = 2.0 V - 0.8 0.5 - 0.5 V
VCC = 4.5 V - 2.1 1.35 - 1.35 V
VCC = 6.0 V - 2.8 1.8 - 1.8 V
VOH HIGH-level output
voltage = VIH or VIL = 20 A; VCC= 2.0V 1.9 2.0 - 1.9 - V = 20 A; VCC= 4.5V 4.4 4.5 - 4.4 - V = 20 A; VCC= 6.0V 5.9 6.0 - 5.9 - V = 2.0 mA; VCC=4.5V 4.13 4.32 - 3.7 - V = 2.6 mA; VCC=6.0V 5.63 5.81 - 5.2 - V
VOL LOW-level output
voltage = VIH or VIL = 20 A; VCC= 2.0V - 0 0.1 - 0.1 V = 20 A; VCC= 4.5V - 0 0.1 - 0.1 V = 20 A; VCC= 6.0V - 0 0.1 - 0.1 V = 2.0 mA; VCC= 4.5V - 0.15 0.33 - 0.4 V = 2.6 mA; VCC= 6.0V - 0.16 0.33 - 0.4 V input leakage current VI =VCCor GND; VCC= 6.0V - - 1.0 - 1.0 A
ICC supply current VI =VCCor GND; IO =0A;
VCC =6.0V 10 - 20 A input capacitance - 1.5 - - - pF
For type 74HCT1G04

VIH HIGH-level input
voltage
VCC = 4.5 V to 5.5 V 2.0 1.6 - 2.0 - V
VIL LOW-level input
voltage
VCC = 4.5 V to 5.5 V - 1.2 0.8 - 0.8 V
VOH HIGH-level output
voltage = VIH or VIL = 20 A; VCC= 4.5V 4.4 4.5 - 4.4 - V = 2.0 mA; VCC=4.5V 4.13 4.32 - 3.7 - V
VOL LOW-level output
voltage = VIH or VIL = 20 A; VCC= 4.5V - 0 0.1 - 0.1 V = 2.0 mA; VCC= 4.5V - 0.15 0.33 - 0.4 V input leakage current VI =VCCor GND; VCC= 5.5V - - 1.0 - 1.0 A
NXP Semiconductors 74HC1G04; 74HCT1G04
Inverter
11. Dynamic characteristics

[1] tpd is the same as tPLH and tPHL.
[2] CPD is used to determine the dynamic power dissipation PD (W). =CPD VCC2fi+(CL VCC2 fo)where:= input frequency in MHz= output frequency in MHz= output load capacitance in pF
VCC= supply voltage in Volts(CL VCC2 fo) = sum of outputs
ICC supply current VI =VCCor GND; IO =0A;
VCC =5.5V 10 - 20 A
ICC additional supply
current
per input; VCC= 4.5Vto 5.5V; =VCC 2.1 V; IO =0A - 500 - 850 A input capacitance - 1.5 - - - pF
Table 7. Static characteristics …continued

Voltages are referenced to GND (ground = 0 V). All typical values are measured at Tamb =25 C.
Table 8. Dynamic characteristics

GND = 0 V; tr = tf  6.0 ns; All typical values are measured at Tamb =25 C. For test circuit, see Figure6
For type 74HC1G04

tpd propagation delay Ato Y; see Figure5 [1]
VCC = 2.0 V; CL=50pF - 25 105 - 135 ns
VCC = 4.5 V; CL =50pF - 9 21 - 27 ns
VCC = 5.0 V; CL =15pF - 7 - - - ns
VCC = 6.0 V; CL =50pF - 8 18 - 23 ns
CPD power dissipation
capacitance =GNDto VCC [2] -16- - - pF
For type 74HCT1G04

tpd propagation delay A to Y; see Figure5 [1]
VCC = 4.5 V; CL =50pF - 10 24 - 27 ns
VCC = 5.0 V; CL =15pF - 8 - - - ns
CPD power dissipation
capacitance =GNDto VCC 1.5V [2] -18- - - pF
NXP Semiconductors 74HC1G04; 74HCT1G04
Inverter
12. Waveforms

Table 9. Measurement points

74HC1G04 GND to VCC 0.5  VCC
74HCT1G04 GND to 03 V 1.3 V
ic,good price


TEL:86-533-2716050      FAX:86-533-2716790
   

©2020 IC PHOENIX CO.,LIMITED