74HC158N ,Quad 2-input multiplexer; invertingGeneral descriptionThe 74HC is a high-speed Si-gate CMOS device and is pin compatible with low powe ..
74HC160D ,Presettable synchronous BCD decade counter; asynchronous resetINTEGRATED CIRCUITSDATA SHEETFor a complete data sheet, please also download:• The IC06 74HC/HCT/HC ..
74HC160DB ,74HC/HCT160; Presettable synchronous BCD decade counter; asynchronous resetGENERAL DESCRIPTIONThe look-ahead carry simplifies serial cascading of thecounters. Both count enab ..
74HC160N ,Presettable synchronous BCD decade counter; asynchronous resetFEATURES input (PE) disables the counting action and causes thedata at the data inputs (D to D ) to ..
74HC160N ,Presettable synchronous BCD decade counter; asynchronous resetGENERAL DESCRIPTIONThe look-ahead carry simplifies serial cascading of thecounters. Both count enab ..
74HC161D ,Presettable synchronous 4-bit binary counter; asynchronous resetINTEGRATED CIRCUITSDATA SHEETFor a complete data sheet, please also download:• The IC06 74HC/HCT/HC ..
74LVC08ATTR ,LOW VOLTAGE CMOS QUAD 2-INPUT AND GATE HIGH PERFORMANCE74LVC08ALOW VOLTAGE CMOS QUAD 2-INPUT AND GATEHIGH PERFORMANCE ■ 5V TOLERANT INPUTS■ HIGH SPEED: ..
74LVC109D ,Dual JK(not) flip-flop with set and reset; positive-edge triggerGeneral descriptionThe 74LVC109A is a dual positive edge triggered JK flip-flop featuring:• individ ..
74LVC109PW ,Dual JK(not) flip-flop with set and reset; positive-edge triggerFeatures and benefits 5 V tolerant inputs for interfacing with 5 V logic Wide supply voltage rang ..
74LVC10ADB ,Triple 3-input NAND gate
74LVC10ADB ,Triple 3-input NAND gate
74LVC10APW ,Triple 3-input NAND gate
74HC158N
Quad 2-input multiplexer; inverting
General descriptionThe 74HC is a high-speed Si-gate CMOS device and is pin compatible with low power
Schottky TTL (LSTTL). The 74HC158 is specified in compliance with JEDEC
standard no. 7A.
The 74HC158 is a quad 2-input multiplexer which select 4 bits of data from two sources
and are controlled by a common data select input (S). The four outputs present the
selected data in the inverted form. The enable input (E) is active LOW.
WhenE is HIGH, all the outputs (1Y to 4Y) are forced HIGH regardless of all other input
conditions.
Moving the data from two groups of registers to four common output buses is a common
useof the 74HC158. The stateofS determines the particular register from which the data
comes. It can also be used as a function generator.
The device is useful for implementing highly irregular logic by generating any four of the
16 different functions of two variables with one variable common.
The 74HC158is the logic implementationofa 4-pole, 2-position switch, where the position
of the switch is determined by the logic levels applied to S.
The logic equations for the output are:
1Y = E.(1l1.S+ 1l0.S)
2Y = E.(2l1.S+ 2l0.S)
3Y = E.(3l1.S+ 3l0.S)
4Y = E.(4l1.S+ 4l0.S)
The 74HC158 is identical to the 74HC157 but has inverting outputs.
Features Low-power dissipation Inverting data path Complies with JEDEC standard no. 7A ESD protection: HBM EIA/JESD22-A114-B exceeds 2000V MM EIA/JESD22-A115-A exceeds 200V. Multiple package options Specified from −40 °Cto+80 °C and from −40°Cto +125 °C.
74HC158
Quad 2-input multiplexer; inverting
Philips Semiconductors 74HC158 Quick reference data[1] CPD is used to determine the dynamic power dissipation (PD in μW). =CPD× VCC2×fi× N+ ∑(CL× VCC2×fo) where:= input frequency in MHz;= output frequency in MHz;= output load capacitance in pF;
VCC= supply voltage in V;= number of inputs switching;
∑(CL× VCC2×fo) = sum of outputs.
Ordering information
Table 1: Quick reference dataGND=0 V; Tamb =25 °C; tr =tf=6 ns.
tPHL, tPLH propagation delay CL = 15 pF;
VCC = 5 V
nI0, nI1 to nY - 12 - ns to nY - 14 - ns
S to nY - 14 - ns input capacitance - 3.5 - pF
CPD power dissipation capacitance
per multiplexer= GND to VCC [1] -40 - pF
Table 2: Ordering information74HC158N −40 °C to +125°C DIP16 plastic dual in-line package; 16 leads (300 mil) SOT38-4
74HC158D −40 °C to +125°C SO16 plastic small outline package; 16 leads;
body width 3.9 mm
SOT109-1
Philips Semiconductors 74HC158 Functional diagram
Philips Semiconductors 74HC158 Pinning information
6.1 Pinning
Philips Semiconductors 74HC158
6.2 Pin description Functional description
7.1 Function table[1] H = HIGH voltage level;
L = LOW voltage level;
X = don’t care.
Table 3: Pin description 1 common data select input
1I0 2 data input 1 from source 0
1I1 3 data input 1 from source 1 4 multiplexer output 1
2I0 5 data input 2 from source 0
2I1 6 data input 2 from source 1 7 multiplexer output 2
GND 8 ground (0 V) 9 multiplexer output 3
3I1 10 data input 3 from source 1
3I0 11 data input 3 from source 0 12 multiplexer output 4
4I1 13 data input 4 from source 1
4I0 14 data input 4 from source 0 15 enable input (active LOW)
VCC 16 positive supply voltage
Table 4: Function[1] XXXH
LLLX H L L H L
Philips Semiconductors 74HC158 Limiting values[1] Above 70 °C: Ptot derates linearly with 12 mW/K.
[2] Above 70 °C: Ptot derates linearly with 8 mW/K.
Recommended operating conditions
Table 5: Limiting valuesIn accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to
GND (ground = 0 V).
VCC supply voltage −0.5 +7 V
IIK input diode current VI < −0.5 V or VI >VCC+ 0.5 V - ±20 mA
IOK output diode current VO< −0.5 V or >VCC+ 0.5V ±20 mA output source or sink
current
VO = −0.5 V to VCC+ 0.5V - ±25 mA
ICC, IGND VCC or GND current - ±50 mA
Tstg storage temperature −65 +150 °C
Ptot power dissipation
DIP16 package [1]- 750 mW
SO16 package [2]- 500 mW
Table 6: Recommended operating conditionsVCC supply voltage 2.0 5.0 6.0 V input voltage 0 - VCC V output voltage 0 - VCC V
tr, tf input rise and fall
times
VCC = 2.0 V - - 1000 ns
VCC = 4.5 V - 6.0 500 ns
VCC = 6.0 V - - 400 ns
Tamb ambient
temperature
−40 - +125 °C
Philips Semiconductors 74HC158
10. Static characteristics
Table 7: Static characteristicsAt recommended operating conditions; voltages are referenced to GND (ground=0V).
Tamb =25°C
VIH HIGH-level input voltage VCC= 2.0V 1.5 1.2 - V
VCC= 4.5V 3.15 2.4 - V
VCC= 6.0V 4.2 3.2 - V
VIL LOW-level input voltage VCC= 2.0V - 0.8 0.5 V
VCC= 4.5V - 2.1 1.35 V
VCC= 6.0V - 2.8 1.8 V
VOH HIGH-level output voltage VI =VIHor VIL= −20 μA; VCC= 2.0V 1.9 2.0 - V= −20 μA; VCC= 4.5V 4.4 4.5 - V= −20 μA; VCC= 6.0V 5.9 6.0 - V=−4 mA; VCC= 4.5V 3.98 4.32 - V= −5.2 mA; VCC= 6.0V 5.48 5.81 - V
VOL LOW-level output voltage VI =VIHor VIL =20 μA; VCC= 2.0V - 0 0.1 V =20 μA; VCC= 4.5V - 0 0.1 V =20 μA; VCC= 6.0V - 0 0.1 V=4 mA; VCC= 4.5V - 0.15 0.26 V= 5.2 mA; VCC= 6.0V - 0.16 0.26 V
ILI input leakage current VI =VCCor GND; VCC= 6.0V - - ±0.1 μA
ICC quiescent supply current VI =VCCor GND; IO=0 A; VCC= 6.0V - - 8.0 μA input capacitance - 3.5 - pF
Tamb= −40 °C to +85°C
VIH HIGH-level input voltage VCC= 2.0V 1.5 - - V
VCC= 4.5V 3.15 - - V
VCC= 6.0V 4.2 - - V
VIL LOW-level input voltage VCC= 2.0V - - 0.5 V
VCC= 4.5V - - 1.35 V
VCC= 6.0V - - 1.8 V
VOH HIGH-level output voltage VI =VIHor VIL= −20 μA; VCC= 2.0V 1.9 - - V= −20 μA; VCC= 4.5V 4.4 - - V= −20 μA; VCC= 6.0V 5.9 - - V=−4 mA; VCC= 4.5V 3.84 - - V= −5.2 mA; VCC= 6.0V 5.34 - - V
Philips Semiconductors 74HC158VOL LOW-level output voltage VI =VIHor VIL =20 μA; VCC= 2.0V - - 0.1 V =20 μA; VCC= 4.5V - - 0.1 V =20 μA; VCC= 6.0V - - 0.1 V=4 mA; VCC= 4.5V - - 0.33 V= 5.2 mA; VCC= 6.0V - - 0.33 V
ILI input leakage current VI =VCCor GND; VCC= 6.0V - - ±1.0 μA
ICC quiescent supply current VI =VCCor GND; IO=0 A; VCC= 6.0V - - 80 μA
Tamb= −40 °C to +125°C
VIH HIGH-level input voltage VCC= 2.0V 1.5 - - V
VCC= 4.5V 3.15 - - V
VCC= 6.0V 4.2 - - V
VIL LOW-level input voltage VCC= 2.0V - - 0.5 V
VCC= 4.5V - - 1.35 V
VCC= 6.0V - - 1.8 V
VOH HIGH-level output voltage VI =VIHor VIL= −20 μA; VCC= 2.0V 1.9 - - V= −20 μA; VCC= 4.5V 4.4 - - V= −20 μA; VCC= 6.0V 5.9 - - V=−4 mA; VCC= 4.5V 3.7 - - V= −5.2 mA; VCC= 6.0V 5.2 - - V
VOL LOW-level output voltage VI =VIHor VIL =20 μA; VCC= 2.0V - - 0.1 V =20 μA; VCC= 4.5V - - 0.1 V =20 μA; VCC= 6.0V - - 0.1 V=4 mA; VCC= 4.5V - - 0.4 V= 5.2 mA; VCC= 6.0V - - 0.4 V
ILI input leakage current VI =VCCor GND; VCC= 6.0V - - ±1.0 μA
ICC quiescent supply current VI =VCCor GND; IO=0 A; VCC= 6.0V - - 160 μA
Table 7: Static characteristics …continuedAt recommended operating conditions; voltages are referenced to GND (ground=0V).