74HCT14PW ,74HC/HCT14; Hex inverting Schmitt triggerPin configuration DHVQFN146.2 Pin description Table 2. Pin descriptionSymbol Pin Description1A to 6 ..
74HCT151 ,8-input multiplexer
74HCT151D ,8-input multiplexerGENERAL DESCRIPTIONThe 74HC/HCT151 are high-speed Si-gate CMOS devices and are pin compatible with ..
74HCT151N ,74HC/HCT151; 8-input multiplexerLogic diagram74HC_HCT151 All information provided in this document is subject to legal disclaimers. ..
74HCT153 ,Dual 4-input multiplexer
74HCT153D ,74HC/HCT153; Dual 4-input multiplexerGENERAL DESCRIPTIONdetermined by the logic levels applied is useful for implementing highlyto S and ..
74VHC138 ,3 TO 8 DECODER (INVERTING)74VHC1383 TO 8 LINE DECODER (INVERTING)
74HC14D-74HC14N-74HCT14D-74HCT14DB-74HCT14PW
Hex inverting Schmitt trigger
1. General descriptionThe 74HC14; 74HCT14 is a high-speed Si-gate CMOS device and is pin compatible with
Low-power Schottky TTL (LSTTL). It is specified in compliance with JEDEC standard
No. 7A.
The 74HC14; 74HCT14 provides six inverting buffers with Schmitt-trigger action. It is
capable of transforming slowly changing input signals into sharply defined, jitter-free
output signals.
2. Features and benefits Low-power dissipation ESD protection: HBM JESD22-A114F exceeds 2000V MM JESD22-A115-A exceeds 200V Multiple package options Specified from 40 C to +85 C and from 40 C to +125C
3. Applications Wave and pulse shapers Astable multivibrators Monostable multivibrators
74HC14; 74HCT14
Hex inverting Schmitt trigger
Rev. 6 — 19 September 2012 Product data sheet
NXP Semiconductors 74HC14; 74HCT14
Hex inverting Schmitt trigger
4. Ordering information
5. Functional diagram
Table 1. Ordering information74HC14N 40 C to +125 C DIP14 plastic dual in-line package; 14 leads (300 mil) SOT27-1
74HCT14N
74HC14D 40 C to +125 C SO14 plastic small outline package; 14 leads; body width
3.9 mm
SOT108-1
74HCT14D
74HC14DB 40 C to +125 C SSOP14 plastic shrink small outline package; 14 leads; body
width 5.3 mm
SOT337-1
74HCT14DB
74HC14PW 40 C to +125 C TSSOP14 plastic thin shrink small outline package; 14 leads;
body width 4.4 mm
SOT402-1
74HCT14PW
74HC14BQ 40 C to +125 C DHVQFN14 plastic dual in-line compatible thermal enhanced very
thin quad flat package; no leads; 14 terminals;
body 2.53 0.85 mm
SOT762-1
74HCT14BQ
NXP Semiconductors 74HC14; 74HCT14
Hex inverting Schmitt trigger
6. Pinning information
6.1 Pinning
6.2 Pin description
7. Functional description[1] H= HIGH voltage level;= LOW voltage level.
Table 2. Pin description1A to 6A 1, 3, 5, 9, 11, 13 data input 1
1Y to 6Y 2, 4, 6, 8, 10, 12 data output 1
GND 7 ground (0V)
VCC 14 supply voltage
Table 3. Function table[1]NXP Semiconductors 74HC14; 74HCT14
Hex inverting Schmitt trigger
8. Limiting values[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
[2] For DIP14 package: Ptot derates linearly with 12 mW/K above 70 C.
For SO14 package: Ptot derates linearly with 8 mW/K above 70 C.
For (T)SSOP14 packages: Ptot derates linearly with 5.5 mW/K above 60C.
For DHVQFN14 packages: Ptot derates linearly with 4.5 mW/K above 60C.
9. Recommended operating conditions
Table 4. Limiting valuesIn accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).
VCC supply voltage 0.5 +7 V
IIK input clamping current VI < 0.5 V or VI >VCC +0.5 V [1]- 20 mA
IOK output clamping current VO< 0.5 V or VO >VCC +0.5V [1]- 20 mA output current 0.5 V < VO < VCC +0.5V - 25 mA
ICC supply current - 50 mA
IGND ground current 50 - mA
Tstg storage temperature 65 +150 C
Ptot total power dissipation [2]
DIP14 package - 750 mW
SO14, (T)SSOP14 and
DHVQFN14 packages 500 mW
Table 5. Recommended operating conditions Voltages are referenced to GND (ground = 0V)
VCC supply voltage 2.0 5.0 6.0 4.5 5.0 5.5 V input voltage 0 - VCC 0- VCC V output voltage 0 - VCC 0- VCC V
Tamb ambient temperature 40 +25 +125 40 +25 +125 C
NXP Semiconductors 74HC14; 74HCT14
Hex inverting Schmitt trigger
10. Static characteristicsTable 6. Static characteristicsAt recommended operating conditions; voltages are referenced to GND (ground = 0 V).
74HC14VOH HIGH-level
output voltage = VT+ or VT
IO = 20 A; VCC = 2.0V 1.9 2.0 - 1.9 - 1.9 - V
IO = 20 A; VCC = 4.5V 4.4 4.5 - 4.4 - 4.4 - V
IO = 20 A; VCC = 6.0V 5.9 6.0 - 5.9 - 5.9 - V
IO = 4.0 mA; VCC = 4.5V 3.98 4.32 - 3.84 - 3.7 - V
IO = 5.2 mA; VCC = 6.0V 5.48 5.81 - 5.34 - 5.2 - V
VOL LOW-level
output voltage = VT+ or VT
IO = 20 A; VCC = 2.0V - 0 0.1 - 0.1 - 0.1 V
IO = 20 A; VCC = 4.5V - 0 0.1 - 0.1 - 0.1 V
IO = 20 A; VCC = 6.0V - 0 0.1 - 0.1 - 0.1 V
IO = 4.0 mA; VCC = 4.5V - 0.15 0.26 - 0.33 - 0.4 V
IO = 5.2 mA; VCC = 6.0V - 0.16 0.26 - 0.33 - 0.4 V input leakage
current
VI = VCC or GND; VCC =6.0V - - 0.1 - 1.0 - 1.0 A
ICC supply current VI = VCC or GND; IO =0A;
VCC =6.0V 2.0 - 20 - 40 A input
capacitance
-3.5 - - - - - pF
74HCT14VOH HIGH-level
output voltage = VT+ or VT; VCC = 4.5V
IO = 20A 4.4 4.5 - 4.4 - 4.4 - V
IO = 4.0 mA 3.98 4.32 - 3.84 - 3.7 - V
VOL LOW-level
output voltage = VT+ or VT; VCC = 4.5V
IO = 20 A; - 0 0.1 - 0.1 - 0.1 V
IO = 4.0 mA; - 0.15 0.26 - 0.33 - 0.4 V input leakage
current
VI = VCC or GND; VCC =5.5V - - 0.1 - 1.0 - 1.0 A
ICC supply current VI =VCCor GND; IO = 0 A;
VCC =5.5V 2.0 - 20 - 40 A
ICC additional
supply current
per input pin; =VCC 2.1 V; other pins
at VCCor GND; IO =0A;
VCC= 4.5Vto 5.5V 30 108 - 135 - 147 A input
capacitance
-3.5 - - - - - pF
NXP Semiconductors 74HC14; 74HCT14
Hex inverting Schmitt trigger
11. Dynamic characteristics[1] tpd is the same as tPHL and tPLH.
[2] tt is the same as tTHL and tTLH.
[3] CPD is used to determine the dynamic power dissipation (PD in W): =CPD VCC2fi N+ (CL VCC2 fo) where:= input frequency in MHz;= output frequency in MHz;= output load capacitance in pF;
VCC= supply voltage in V;= number of inputs switching;(CL VCC2fo)= sum of outputs.
Table 7. Dynamic characteristicsGND=0 V; CL =50 pF; for test circuit see Figure7.
74HC14tpd propagation delay nA to nY; see Figure6 [1]
VCC = 2.0 V - 41 125 155 190 ns
VCC = 4.5 V - 15 25 31 38 ns
VCC = 5.0 V; CL =15pF - 12 - - - ns
VCC = 6.0 V - 12 21 26 32 ns transition time see Figure6 [2]
VCC = 2.0 V - 19 75 95 110 ns
VCC = 4.5 V - 7 15 19 22 ns
VCC = 6.0 V - 6 13 15 19 ns
CPD power dissipation
capacitance
per package; VI =GNDto VCC [3] -7- - - pF
74HCT14tpd propagation delay nA to nY; see Figure6 [1]
VCC = 4.5 V - 20 34 43 51 ns
VCC = 5.0 V; CL =15pF - 17 - - - ns transition time VCC = 4.5 V; see Figure6 [2] - 7 15 19 22 ns
CPD power dissipation
capacitance
per package; =GNDto VCC 1.5V
[3] -8- - - pF
NXP Semiconductors 74HC14; 74HCT14
Hex inverting Schmitt trigger
12. Waveforms
Table 8. Measurement points74HC14 0.5VCC 0.5VCC 0.1VCC 0.9VCC
74HCT14 1.3V 1.3V 0.1VCC 0.9VCC
NXP Semiconductors 74HC14; 74HCT14
Hex inverting Schmitt trigger
13. Transfer characteristics
14. Transfer characteristics waveforms
Table 9. Test data74HC14 VCC 6.0 ns 15 pF, 50pF tPLH, tPHL
74HCT14 3.0V 6.0 ns 15 pF, 50pF tPLH, tPHL
Table 10. Transfer characteristicsAt recommended operating conditions; voltages are referenced to GND (ground = 0 V); see Figure 8 and Figure9.
74HC14VT+ positive-going
threshold
voltage
VCC = 2.0 V 0.7 1.18 1.5 0.7 1.5 0.7 1.5 V
VCC = 4.5 V 1.7 2.38 3.15 1.7 3.15 1.7 3.15 V
VCC = 6.0 V 2.1 3.14 4.2 2.1 4.2 2.1 4.2 V
VT negative-going
threshold
voltage
VCC = 2.0 V 0.3 0.52 0.9 0.3 0.9 0.3 0.9 V
VCC = 4.5 V 0.9 1.4 2.0 0.9 2.0 0.9 2.0 V
VCC = 6.0 V 1.2 1.89 2.6 1.2 2.6 1.2 2.6 V hysteresis
voltage
VCC = 2.0 V 0.2 0.66 1.0 0.2 1.0 0.2 1.0 V
VCC = 4.5 V 0.4 0.98 1.4 0.4 1.4 0.4 1.4 V
VCC = 6.0 V 0.6 1.25 1.6 0.6 1.6 0.6 1.6 V
74HCT14VT+ positive-going
threshold
voltage
VCC = 4.5 V 1.2 1.41 1.9 1.2 1.9 1.2 1.9 V
VCC = 5.5 V 1.4 1.59 2.1 1.4 2.1 1.4 2.1 V
VT negative-going
threshold
voltage
VCC = 4.5 V 0.5 0.85 1.2 0.5 1.2 0.5 1.2 V
VCC = 5.5 V 0.6 0.99 1.4 0.6 1.4 0.6 1.4 V hysteresis
voltage
VCC = 4.5 V 0.4 0.56 - 0.4 - 0.4 - V
VCC = 5.5 V 0.4 0.6 - 0.4 - 0.4 - V
NXP Semiconductors 74HC14; 74HCT14
Hex inverting Schmitt triggerNXP Semiconductors 74HC14; 74HCT14
Hex inverting Schmitt trigger
15. Application informationThe slow input rise and fall times cause additional power dissipation, this can be
calculated using the following formula:
Padd =fi(tr ICC(AV) +tf ICC(AV)) VCC where:
Padd= additional power dissipation (W);= input frequency (MHz); =rise time (ns); 10 %to90%;= fall time (ns); 90%to10%;
ICC(AV)= average additional supply current (A).
Average ICC(AV) differs with positive or negative input transitions, as shown in Figure 12
and Figure 13.
An example of a relaxation circuit using the 74HC14; 74HCT14 is shown in Figure 14.
NXP Semiconductors 74HC14; 74HCT14
Hex inverting Schmitt trigger