IC Phoenix
 
Home ›  7716 > 74HC14D-74HC14N-74HCT14D-74HCT14DB-74HCT14PW,74HC/HCT14; Hex inverting Schmitt trigger
74HC14D-74HC14N-74HCT14D-74HCT14DB-74HCT14PW Fast Delivery,Good Price
Part Number:
If you need More Quantity or Better Price,Welcom Any inquiry.
We available via phone +865332716050 Email
Partno Mfg Dc Qty AvailableDescript
74HC14DNXP Pb-freeN/a6502avai74HC/HCT14; Hex inverting Schmitt trigger
74HC14NN/a2500avaiHex inverting Schmitt trigger
74HCT14DNXPN/a10000avai74HC/HCT14; Hex inverting Schmitt trigger
74HCT14DBNXPLIPSN/a13368avaiHex inverting Schmitt trigger
74HCT14PWNXPN/a30000avai74HC/HCT14; Hex inverting Schmitt trigger


74HCT14PW ,74HC/HCT14; Hex inverting Schmitt triggerPin configuration DHVQFN146.2 Pin description Table 2. Pin descriptionSymbol Pin Description1A to 6 ..
74HCT151 ,8-input multiplexer
74HCT151D ,8-input multiplexerGENERAL DESCRIPTIONThe 74HC/HCT151 are high-speed Si-gate CMOS devices and are pin compatible with ..
74HCT151N ,74HC/HCT151; 8-input multiplexerLogic diagram74HC_HCT151 All information provided in this document is subject to legal disclaimers. ..
74HCT153 ,Dual 4-input multiplexer
74HCT153D ,74HC/HCT153; Dual 4-input multiplexerGENERAL DESCRIPTIONdetermined by the logic levels applied is useful for implementing highlyto S and ..
74VHC138 ,3 TO 8 DECODER (INVERTING)74VHC1383 TO 8 LINE DECODER (INVERTING)

74HC14D-74HC14N-74HCT14D-74HCT14DB-74HCT14PW
Hex inverting Schmitt trigger
1. General description
The 74HC14; 74HCT14 is a high-speed Si-gate CMOS device and is pin compatible with
Low-power Schottky TTL (LSTTL). It is specified in compliance with JEDEC standard
No. 7A.
The 74HC14; 74HCT14 provides six inverting buffers with Schmitt-trigger action. It is
capable of transforming slowly changing input signals into sharply defined, jitter-free
output signals.
2. Features and benefits
Low-power dissipation ESD protection: HBM JESD22-A114F exceeds 2000V MM JESD22-A115-A exceeds 200V Multiple package options Specified from 40 C to +85 C and from 40 C to +125C
3. Applications
Wave and pulse shapers Astable multivibrators Monostable multivibrators
74HC14; 74HCT14
Hex inverting Schmitt trigger
Rev. 6 — 19 September 2012 Product data sheet
NXP Semiconductors 74HC14; 74HCT14
Hex inverting Schmitt trigger
4. Ordering information

5. Functional diagram

Table 1. Ordering information

74HC14N 40 C to +125 C DIP14 plastic dual in-line package; 14 leads (300 mil) SOT27-1
74HCT14N
74HC14D 40 C to +125 C SO14 plastic small outline package; 14 leads; body width
3.9 mm
SOT108-1
74HCT14D
74HC14DB 40 C to +125 C SSOP14 plastic shrink small outline package; 14 leads; body
width 5.3 mm
SOT337-1
74HCT14DB
74HC14PW 40 C to +125 C TSSOP14 plastic thin shrink small outline package; 14 leads;
body width 4.4 mm
SOT402-1
74HCT14PW
74HC14BQ 40 C to +125 C DHVQFN14 plastic dual in-line compatible thermal enhanced very
thin quad flat package; no leads; 14 terminals;
body 2.53 0.85 mm
SOT762-1
74HCT14BQ
NXP Semiconductors 74HC14; 74HCT14
Hex inverting Schmitt trigger
6. Pinning information
6.1 Pinning

6.2 Pin description

7. Functional description

[1] H= HIGH voltage level;= LOW voltage level.
Table 2. Pin description

1A to 6A 1, 3, 5, 9, 11, 13 data input 1
1Y to 6Y 2, 4, 6, 8, 10, 12 data output 1
GND 7 ground (0V)
VCC 14 supply voltage
Table 3. Function table[1]

NXP Semiconductors 74HC14; 74HCT14
Hex inverting Schmitt trigger
8. Limiting values

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
[2] For DIP14 package: Ptot derates linearly with 12 mW/K above 70 C.
For SO14 package: Ptot derates linearly with 8 mW/K above 70 C.
For (T)SSOP14 packages: Ptot derates linearly with 5.5 mW/K above 60C.
For DHVQFN14 packages: Ptot derates linearly with 4.5 mW/K above 60C.
9. Recommended operating conditions

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).
VCC supply voltage 0.5 +7 V
IIK input clamping current VI < 0.5 V or VI >VCC +0.5 V [1]- 20 mA
IOK output clamping current VO< 0.5 V or VO >VCC +0.5V [1]- 20 mA output current 0.5 V < VO < VCC +0.5V - 25 mA
ICC supply current - 50 mA
IGND ground current 50 - mA
Tstg storage temperature 65 +150 C
Ptot total power dissipation [2]
DIP14 package - 750 mW
SO14, (T)SSOP14 and
DHVQFN14 packages 500 mW
Table 5. Recommended operating conditions

Voltages are referenced to GND (ground = 0V)
VCC supply voltage 2.0 5.0 6.0 4.5 5.0 5.5 V input voltage 0 - VCC 0- VCC V output voltage 0 - VCC 0- VCC V
Tamb ambient temperature 40 +25 +125 40 +25 +125 C
NXP Semiconductors 74HC14; 74HCT14
Hex inverting Schmitt trigger
10. Static characteristics
Table 6. Static characteristics
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
74HC14

VOH HIGH-level
output voltage = VT+ or VT
IO = 20 A; VCC = 2.0V 1.9 2.0 - 1.9 - 1.9 - V
IO = 20 A; VCC = 4.5V 4.4 4.5 - 4.4 - 4.4 - V
IO = 20 A; VCC = 6.0V 5.9 6.0 - 5.9 - 5.9 - V
IO = 4.0 mA; VCC = 4.5V 3.98 4.32 - 3.84 - 3.7 - V
IO = 5.2 mA; VCC = 6.0V 5.48 5.81 - 5.34 - 5.2 - V
VOL LOW-level
output voltage = VT+ or VT
IO = 20 A; VCC = 2.0V - 0 0.1 - 0.1 - 0.1 V
IO = 20 A; VCC = 4.5V - 0 0.1 - 0.1 - 0.1 V
IO = 20 A; VCC = 6.0V - 0 0.1 - 0.1 - 0.1 V
IO = 4.0 mA; VCC = 4.5V - 0.15 0.26 - 0.33 - 0.4 V
IO = 5.2 mA; VCC = 6.0V - 0.16 0.26 - 0.33 - 0.4 V input leakage
current
VI = VCC or GND; VCC =6.0V - - 0.1 - 1.0 - 1.0 A
ICC supply current VI = VCC or GND; IO =0A;
VCC =6.0V 2.0 - 20 - 40 A input
capacitance
-3.5 - - - - - pF
74HCT14

VOH HIGH-level
output voltage = VT+ or VT; VCC = 4.5V
IO = 20A 4.4 4.5 - 4.4 - 4.4 - V
IO = 4.0 mA 3.98 4.32 - 3.84 - 3.7 - V
VOL LOW-level
output voltage = VT+ or VT; VCC = 4.5V
IO = 20 A; - 0 0.1 - 0.1 - 0.1 V
IO = 4.0 mA; - 0.15 0.26 - 0.33 - 0.4 V input leakage
current
VI = VCC or GND; VCC =5.5V - - 0.1 - 1.0 - 1.0 A
ICC supply current VI =VCCor GND; IO = 0 A;
VCC =5.5V 2.0 - 20 - 40 A
ICC additional
supply current
per input pin; =VCC 2.1 V; other pins
at VCCor GND; IO =0A;
VCC= 4.5Vto 5.5V 30 108 - 135 - 147 A input
capacitance
-3.5 - - - - - pF
NXP Semiconductors 74HC14; 74HCT14
Hex inverting Schmitt trigger
11. Dynamic characteristics

[1] tpd is the same as tPHL and tPLH.
[2] tt is the same as tTHL and tTLH.
[3] CPD is used to determine the dynamic power dissipation (PD in W): =CPD VCC2fi N+  (CL VCC2 fo) where:= input frequency in MHz;= output frequency in MHz;= output load capacitance in pF;
VCC= supply voltage in V;= number of inputs switching;(CL VCC2fo)= sum of outputs.
Table 7. Dynamic characteristics

GND=0 V; CL =50 pF; for test circuit see Figure7.
74HC14

tpd propagation delay nA to nY; see Figure6 [1]
VCC = 2.0 V - 41 125 155 190 ns
VCC = 4.5 V - 15 25 31 38 ns
VCC = 5.0 V; CL =15pF - 12 - - - ns
VCC = 6.0 V - 12 21 26 32 ns transition time see Figure6 [2]
VCC = 2.0 V - 19 75 95 110 ns
VCC = 4.5 V - 7 15 19 22 ns
VCC = 6.0 V - 6 13 15 19 ns
CPD power dissipation
capacitance
per package; VI =GNDto VCC [3] -7- - - pF
74HCT14

tpd propagation delay nA to nY; see Figure6 [1]
VCC = 4.5 V - 20 34 43 51 ns
VCC = 5.0 V; CL =15pF - 17 - - - ns transition time VCC = 4.5 V; see Figure6 [2] - 7 15 19 22 ns
CPD power dissipation
capacitance
per package; =GNDto VCC 1.5V
[3] -8- - - pF
NXP Semiconductors 74HC14; 74HCT14
Hex inverting Schmitt trigger
12. Waveforms

Table 8. Measurement points

74HC14 0.5VCC 0.5VCC 0.1VCC 0.9VCC
74HCT14 1.3V 1.3V 0.1VCC 0.9VCC
NXP Semiconductors 74HC14; 74HCT14
Hex inverting Schmitt trigger

13. Transfer characteristics

14. Transfer characteristics waveforms

Table 9. Test data

74HC14 VCC 6.0 ns 15 pF, 50pF tPLH, tPHL
74HCT14 3.0V 6.0 ns 15 pF, 50pF tPLH, tPHL
Table 10. Transfer characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); see Figure 8 and Figure9.
74HC14

VT+ positive-going
threshold
voltage
VCC = 2.0 V 0.7 1.18 1.5 0.7 1.5 0.7 1.5 V
VCC = 4.5 V 1.7 2.38 3.15 1.7 3.15 1.7 3.15 V
VCC = 6.0 V 2.1 3.14 4.2 2.1 4.2 2.1 4.2 V
VT negative-going
threshold
voltage
VCC = 2.0 V 0.3 0.52 0.9 0.3 0.9 0.3 0.9 V
VCC = 4.5 V 0.9 1.4 2.0 0.9 2.0 0.9 2.0 V
VCC = 6.0 V 1.2 1.89 2.6 1.2 2.6 1.2 2.6 V hysteresis
voltage
VCC = 2.0 V 0.2 0.66 1.0 0.2 1.0 0.2 1.0 V
VCC = 4.5 V 0.4 0.98 1.4 0.4 1.4 0.4 1.4 V
VCC = 6.0 V 0.6 1.25 1.6 0.6 1.6 0.6 1.6 V
74HCT14

VT+ positive-going
threshold
voltage
VCC = 4.5 V 1.2 1.41 1.9 1.2 1.9 1.2 1.9 V
VCC = 5.5 V 1.4 1.59 2.1 1.4 2.1 1.4 2.1 V
VT negative-going
threshold
voltage
VCC = 4.5 V 0.5 0.85 1.2 0.5 1.2 0.5 1.2 V
VCC = 5.5 V 0.6 0.99 1.4 0.6 1.4 0.6 1.4 V hysteresis
voltage
VCC = 4.5 V 0.4 0.56 - 0.4 - 0.4 - V
VCC = 5.5 V 0.4 0.6 - 0.4 - 0.4 - V
NXP Semiconductors 74HC14; 74HCT14
Hex inverting Schmitt trigger

NXP Semiconductors 74HC14; 74HCT14
Hex inverting Schmitt trigger

15. Application information

The slow input rise and fall times cause additional power dissipation, this can be
calculated using the following formula:
Padd =fi(tr ICC(AV) +tf ICC(AV)) VCC where:
Padd= additional power dissipation (W);= input frequency (MHz); =rise time (ns); 10 %to90%;= fall time (ns); 90%to10%;
ICC(AV)= average additional supply current (A).
Average ICC(AV) differs with positive or negative input transitions, as shown in Figure 12
and Figure 13.
An example of a relaxation circuit using the 74HC14; 74HCT14 is shown in Figure 14.
NXP Semiconductors 74HC14; 74HCT14
Hex inverting Schmitt trigger

ic,good price


TEL:86-533-2716050      FAX:86-533-2716790
   

©2020 IC PHOENIX CO.,LIMITED