74AUP1T34GF ,Low-power dual supply translating bufferFeatures and benefits Wide supply voltage range from 1.1 V to 3.6 V High noise immunity Complies ..
74AUP2G125GM ,Low-power dual buffer/line driver; 3-state
74AUP2G132DC ,low-power dual 2-input NAND Schmitt trigger
74AUP2G17GM ,Low-power dual Schmitt trigger
74AUP2G79DC ,Low-power dual D-type flip-flop; positive-edge trigger
74AVC16244 ,3-state (3.6 V tolerant)
74HC597D ,8-bit shift register with input flip-flopsINTEGRATED CIRCUITSDATA SHEETFor a complete data sheet, please also download:• The IC06 74HC/HCT/HC ..
74HC597N ,74HC/HCT597; 8-bit shift register with input flip-flopsGeneral descriptionThe 74HC597; 74HCT597 is an 8-bit shift register with input flip-flops. It consi ..
74HC597PW ,8-bit shift register with input flip-flops 74HC597; 74HCT5978-bit shift register with input flip-flopsRev. 3 — 15 April 2014 Product data she ..
74HC6323AD ,Programmable ripple counter with oscillator; 3-stateGENERAL DESCRIPTION1. C is used to determine the dynamic power dissipation (P in μW):PD D2 2The HC/ ..
74HC6323AD ,Programmable ripple counter with oscillator; 3-stateGENERAL DESCRIPTION1. C is used to determine the dynamic power dissipation (P in μW):PD D2 2The HC/ ..
74HC640 ,inverting
74AUP1T34GF
Low-power dual supply translating buffer
1. General descriptionThe 74AUP1T34 provides a single buffer with two separate supply voltages. Input A is
designed to track VCC(A). Output Y is designed to track VCC(Y). Both, VCC(A) and VCC(Y)
accepts any supply voltage from 1.1 V to 3.6 V. This feature allows universal low voltage
interfacing between any of the 1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V voltage nodes.
Schmitt trigger action at all inputs makes the circuit tolerant to slower input rise and fall
times across the entire VCC range from 1.1 V to 3.6 V. This device ensures a very low
static and dynamic power consumption across the entire VCC range from 1.1 V to 3.6 V.
This device is fully specified for partial power-down applications using IOFF.
The IOFF circuitry disables the output, preventing the damaging backflow current through
the device when it is powered down.
2. Features and benefits Wide supply voltage range from 1.1 Vto 3.6V High noise immunity Complies with JEDEC standards: JESD8-7 (1.2 Vto 1.95V) JESD8-5 (1.8 Vto 2.7V) JESD8-B (2.7 Vto 3.6V) ESD protection: HBM JESD22-A114F Class 3A exceeds 5000V MM JESD22-A115-A exceeds 200V CDM JESD22-C101E exceeds 1000V Wide supply voltage range: VCC(A): 1.1Vto 3.6V VCC(Y): 1.1Vto 3.6V Low static power consumption; ICC = 0.9 A (maximum) Each port operates over the full 1.1 V to 3.6 V power supply range Latch-up performance exceeds 100 mA per JESD 78 Class II Inputs accept voltages up to 3.6V Low noise overshoot and undershoot < 10 % of VCC IOFF circuitry provides partial Power-down mode operation Multiple package options Specified from 40 Cto+85 C and 40 Cto+125C
74AUP1T34
Low-power dual supply translating buffer
Rev. 5 — 4 September 2013 Product data sheet
NXP Semiconductors 74AUP1T34
Low-power dual supply translating buffer
3. Ordering information
4. Marking[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.
5. Functional diagram
Table 1. Ordering information74AUP1T34GW 40 C to +125 C TSSOP5 plastic thin shrink small outline package; 5 leads;
body width 1.25 mm
SOT353-1
74AUP1T34GM 40 C to +125 C XSON6 plastic extremely thin small outline package; no leads;
6 terminals; body 1 1.45 0.5 mm
SOT886
74AUP1T34GF 40 C to +125 C XSON6 plastic extremely thin small outline package; no leads;
6 terminals; body 11 0.5 mm
SOT891
74AUP1T34GN 40 C to +125C XSON6 extremely thin small outline package; no leads; terminals; body 0.9 1.0 0.35 mm
SOT1115
74AUP1T34GS 40 C to +125C XSON6 extremely thin small outline package; no leads; terminals; body 1.0 1.0 0.35 mm
SOT1202
74AUP1T34GX 40 C to +125C X2SON5 X2SON5: plastic thermal enhanced extremely thin
small outline package; no leads; 5 terminals;
body 0.8 0.8 0.35 mm
SOT1226
Table 2. Marking74AUP1T34GW pQ
74AUP1T34GM pQ
74AUP1T34GF pQ
74AUP1T34GN pQ
74AUP1T34GS pQ
74AUP1T34GX pQ
NXP Semiconductors 74AUP1T34
Low-power dual supply translating buffer
6. Pinning information
6.1 Pinning
6.2 Pin description
Table 3. Pin descriptionVCC(A) 1 1 supply voltage port A 2 2 data input A
GND 3 3 ground (0V) 4 4 data output Y
n.c. - 5 not connected
VCC(Y) 5 6 supply voltage port Y
NXP Semiconductors 74AUP1T34
Low-power dual supply translating buffer
7. Functional description[1] H= HIGH voltage level; L= LOW voltage level.
8. Limiting values[1] The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed.
[2] For TSSOP5 packages: above 87.5 C the value of Ptot derates linearly with 4.0 mW/K.
For XSON6 and X2SON5 packages: above 118 C the value of Ptot derates linearly with 7.8 mW/K.
Table 4. Function table[1]
Table 5. Limiting valuesIn accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).
VCC(A) supply voltage A 0.5 +4.6 V
VCC(Y) supply voltage Y 0.5 +4.6 V
IIK input clamping current VI <0V 50 - mA input voltage [1] 0.5 +4.6 V
IOK output clamping current VO <0V 50 - mA output voltage Active mode and Power-down mode [1] 0.5 +4.6 V output current VO =0 VtoVCC(Y) - 20 mA
ICC supply current - 50 mA
IGND ground current 50 - mA
Tstg storage temperature 65 +150 C
Ptot total power dissipation Tamb= 40 C to +125C [2]- 250 mW
NXP Semiconductors 74AUP1T34
Low-power dual supply translating buffer
9. Recommended operating conditions
10. Static characteristics
Table 6. Recommended operating conditionsVCC(A) supply voltage A 1.1 3.6 V
VCC(Y) supply voltage Y 1.1 3.6 V input voltage 0 3.6 V output voltage 0 VCC(Y) V
Tamb ambient temperature 40 +125 C
t/V input transition rise and fall rate control and data inputs;
VCC(A) = 1.1 V to 3.6 V
0200 ns/V
Table 7. Static characteristicsAt recommended operating conditions; voltages are referenced to GND (ground=0V).
Tamb = 25 CVIH HIGH-level
input voltage
VCC(A) = 1.1 V to 1.95 V; VCC(Y) = 1.1 V to 3.6 V 0.65 VCC(A) -- V
VCC(A) = 2.3 V to 2.7 V; VCC(Y) = 1.1 V to 3.6 V 1.6 - - V
VCC(A) = 3.0 V to 3.6 V; VCC(Y) = 1.1 V to 3.6 V 2.0 - - V
VIL LOW-level input
voltage
VCC(A) = 1.1 V to 1.95 V; VCC(Y) = 1.1 V to 3.6 V - - 0.35 VCC(A)V
VCC(A) = 2.3 V to 2.7 V; VCC(Y) = 1.1 V to 3.6 V - - 0.7 V
VCC(A) = 3.0 V to 3.6 V; VCC(Y) = 1.1 V to 3.6 V - - 0.9 V
VOH HIGH-level
output voltage
VI = VIH
IO = 20 A; VCC(A) =VCC(Y)= 1.1V to 3.6 V VCC(Y) 0.1 - - V
IO = 1.1 mA; VCC(A) = VCC(Y) = 1.1 V 0.75 VCC(Y) -- V
IO = 1.7 mA; VCC(A) = VCC(Y) = 1.4 V 1.11 - - V
IO = 1.9 mA; VCC(A) = VCC(Y) = 1.65 V 1.32 - - V
IO = 2.3 mA; VCC(A) = VCC(Y) = 2.3 V 2.05 - - V
IO = 3.1 mA; VCC(A) = VCC(Y) = 2.3 V 1.9 - - V
IO = 2.7 mA; VCC(A) = VCC(Y) = 3.0 V 2.72 - - V
IO = 4.0 mA; VCC(A) = VCC(Y) = 3.0 V 2.6 - - V
VOL LOW-level
output voltage
VI = VIL
IO = 20 A; VCC(A) =VCC(Y)= 1.1Vto 3.6 V - - 0.1 V
IO = 1.1 mA; VCC(A) = VCC(Y) = 1.1 V - - 0.3 VCC(Y) V
IO = 1.7 mA; VCC(A) = VCC(Y) = 1.4 V - - 0.31 V
IO = 1.9 mA; VCC(A) = VCC(Y) = 1.65 V - - 0.31 V
IO = 2.3 mA; VCC(A) = VCC(Y) = 2.3 V - - 0.31 V
IO = 3.1 mA; VCC(A) = VCC(Y) = 2.3 V - - 0.44 V
IO = 2.7 mA; VCC(A) = VCC(Y) = 3.0 V - - 0.31 V
IO = 4.0 mA; VCC(A) = VCC(Y) = 3.0 V - - 0.44 V input leakage
current
VI = 0 V to 3.6 V; VCC(A) =VCC(Y)= 1.1Vto 3.6V - - 0.1 A
NXP Semiconductors 74AUP1T34
Low-power dual supply translating bufferIOFF power-off
leakage current
A input; VI = 0 V to 3.6 V;
VCC(A) =0V; VCC(Y)=0V to 3.6 V 0.2 A
Y output; VO = 0 V to 3.6 V; VCC(A) =0Vto3.6V;
VI = 0 V or 3.6 V; VCC(Y) =0V 0.2 A
IOFF additional
power-off
leakage current
A input; VI = 0 V to 3.6 V;
VCC(A) =0Vto0.2 V;VCC(Y)= 0 Vto 3.6 V 0.2 A
Y output; VO = 0 V to 3.6 V; VCC(A) =0Vto3.6V;
VI = 0 V or 3.6 V; VCC(Y)=0Vto 0.2 V 0.2 A
ICC supply current port A; VI = GND or VCC(A); IO = 0A
VCC(A) = VCC(Y) = 1.1 V to 3.6 V - - 0.5 A
VCC(A) = 3.6 V; VCC(Y) = 0 V - - 0.5 A
VCC(A) = 0 V; VCC(Y) = 3.6 V - 0.0 - A
port Y; VI = GND or VCC(A); IO = 0A
VCC(A) = VCC(Y) = 1.1 V to 3.6 V - - 0.5 A
VCC(A) = 3.6 V; VCC(Y) = 0 V - 0.0 - A
VCC(A) = 0 V; VCC(Y) = 3.6 V - - 0.5 A
port A and port Y; VI =GND or VCC(A); IO = 0A;
VCC(A) =VCC(Y)= 1.1V to 3.6 V 0.5 A
ICC additional
supply current
A input; VCC(A) = 3.3 V; VCC(Y) = 0 V to 3.6 V; =VCC(A) 0.6 V 40 A input
capacitance
A input; VCC(A) =VCC(Y) =0Vto3.6V; =GNDor VCC(A)
-1.0 - pF output
capacitance
Y output; VO = GND; VCC(Y) = 0 V;
VCC(A) =0Vto3.6V
-1.8 - pF
Tamb = 40 C to +85C
VIH HIGH-level
input voltage
VCC(A) = 1.1 V to 1.95 V; VCC(Y) = 1.1 V to 3.6 V 0.65 VCC(A) -- V
VCC(A) = 2.3 V to 2.7 V; VCC(Y) = 1.1 V to 3.6 V 1.6 - - V
VCC(A) = 3.0 V to 3.6 V; VCC(Y) = 1.1 V to 3.6 V 2.0 - - V
VIL LOW-level input
voltage
VCC(A) = 1.1 V to 1.95 V; VCC(Y) = 1.1 V to 3.6 V - - 0.35 VCC(A)V
VCC(A) = 2.3 V to 2.7 V; VCC(Y) = 1.1 V to 3.6 V - - 0.7 V
VCC(A) = 3.0 V to 3.6 V; VCC(Y) = 1.1 V to 3.6 V - - 0.9 V
VOH HIGH-level
output voltage
VI = VIH
IO = 20 A; VCC(A) =VCC(Y)= 1.1V to 3.6 V VCC(Y) 0.1 - - V
IO = 1.1 mA; VCC(A) = VCC(Y) = 1.1 V 0.7 VCC(Y) -- V
IO = 1.7 mA; VCC(A) = VCC(Y) = 1.4 V 1.03 - - V
IO = 1.9 mA; VCC(A) = VCC(Y) = 1.65 V 1.30 - - V
IO = 2.3 mA; VCC(A) = VCC(Y) = 2.3 V 1.97 - - V
IO = 3.1 mA; VCC(A) = VCC(Y) = 2.3 V 1.85 - - V
IO = 2.7 mA; VCC(A) = VCC(Y) = 3.0 V 2.67 - - V
IO = 4.0 mA; VCC(A) = VCC(Y) = 3.0 V 2.55 - - V
Table 7. Static characteristics …continuedAt recommended operating conditions; voltages are referenced to GND (ground=0V).
NXP Semiconductors 74AUP1T34
Low-power dual supply translating bufferVOL LOW-level
output voltage
VI = VIL
IO = 20 A; VCC(A) =VCC(Y)= 1.1Vto 3.6 V - - 0.1 V
IO = 1.1 mA; VCC(A) = VCC(Y) = 1.1 V - - 0.3 VCC(Y) V
IO = 1.7 mA; VCC(A) = VCC(Y) = 1.4 V - - 0.37 V
IO = 1.9 mA; VCC(A) = VCC(Y) = 1.65 V - - 0.35 V
IO = 2.3 mA; VCC(A) = VCC(Y) = 2.3 V - - 0.33 V
IO = 3.1 mA; VCC(A) = VCC(Y) = 2.3 V - - 0.45 V
IO = 2.7 mA; VCC(A) = VCC(Y) = 3.0 V - - 0.33 V
IO = 4.0 mA; VCC(A) = VCC(Y) = 3.0 V - - 0.45 V input leakage
current
VI = 0 V to 3.6 V; VCC(A) =VCC(Y)= 1.1Vto 3.6V - - 0.5 A
IOFF power-off
leakage current
A input; VI = 0 V to 3.6 V;
VCC(A) =0V; VCC(Y)=0V to 3.6 V 0.5 A
Y output; VO = 0 V to 3.6 V; VCC(A) =0Vto3.6V;
VI = 0 V or 3.6 V; VCC(Y) =0V 0.5 A
IOFF additional
power-off
leakage current
A input; VI = 0 V to 3.6 V;
VCC(A) =0Vto0.2 V;VCC(Y)= 0 Vto 3.6 V 0.6 A
Y output; VO = 0 V to 3.6 V; VCC(A) =0Vto3.6V;
VI = 0 V or 3.6 V; VCC(Y)=0Vto 0.2 V 0.6 A
ICC supply current port A; VI = GND or VCC(A); IO = 0A
VCC(A) = VCC(Y) = 1.1 V to 3.6 V - - 0.9 A
VCC(A) = 3.6 V; VCC(Y) = 0 V - - 0.9 A
VCC(A) = 0 V; VCC(Y) = 3.6 V - 0.0 - A
port Y; VI = GND or VCC(A); IO = 0A
VCC(A) = VCC(Y) = 1.1 V to 3.6 V - - 0.9 A
VCC(A) = 3.6 V; VCC(Y) = 0 V - 0.0 - A
VCC(A) = 0 V; VCC(Y) = 3.6 V - - 0.9 A
port A and port Y; VI =GND or VCC(A); IO = 0A;
VCC(A) =VCC(Y)= 1.1V to 3.6 V 0.9 A
ICC additional
supply current
A input; VCC(A) = 3.3 V; VCC(Y) = 0 V to 3.6 V; =VCC(A) 0.6 V 50 A
Tamb = 40 C to +125C
VIH HIGH-level
input voltage
VCC(A) = 1.1 V to 1.95 V; VCC(Y) = 1.1 V to 3.6 V 0.7 VCC(A) -- V
VCC(A) = 2.3 V to 2.7 V; VCC(Y) = 1.1 V to 3.6 V 1.6 - - V
VCC(A) = 3.0 V to 3.6 V; VCC(Y) = 1.1 V to 3.6 V 2.0 - - V
VIL LOW-level input
voltage
VCC(A) = 1.1 V to 1.95 V; VCC(Y) = 1.1 V to 3.6 V - - 0.3 VCC(A) V
VCC(A) = 2.3 V to 2.7 V; VCC(Y) = 1.1 V to 3.6 V - - 0.7 V
VCC(A) = 3.0 V to 3.6 V; VCC(Y) = 1.1 V to 3.6 V - - 0.9 V
Table 7. Static characteristics …continuedAt recommended operating conditions; voltages are referenced to GND (ground=0V).
NXP Semiconductors 74AUP1T34
Low-power dual supply translating bufferVOH HIGH-level
output voltage
VI = VIH
IO = 20 A; VCC(A) =VCC(Y)= 1.1V to 3.6 V VCC(Y) 0.11- - V
IO = 1.1 mA; VCC(A) = VCC(Y) = 1.1 V 0.6 VCC(Y) -- V
IO = 1.7 mA; VCC(A) = VCC(Y) = 1.4 V 0.93 - - V
IO = 1.9 mA; VCC(A) = VCC(Y) = 1.65 V 1.17 - - V
IO = 2.3 mA; VCC(A) = VCC(Y) = 2.3 V 1.77 - - V
IO = 3.1 mA; VCC(A) = VCC(Y) = 2.3 V 1.67 - - V
IO = 2.7 mA; VCC(A) = VCC(Y) = 3.0 V 2.40 - - V
IO = 4.0 mA; VCC(A) = VCC(Y) = 3.0 V 2.30 - - V
VOL LOW-level
output voltage
VI = VIL
IO = 20 A; VCC(A) =VCC(Y)= 1.1Vto 3.6 V - - 0.11 V
IO = 1.1 mA; VCC(A) = VCC(Y) = 1.1 V - - 0.33 VCC(Y)V
IO = 1.7 mA; VCC(A) = VCC(Y) = 1.4 V - - 0.41 V
IO = 1.9 mA; VCC(A) = VCC(Y) = 1.65 V - - 0.39 V
IO = 2.3 mA; VCC(A) = VCC(Y) = 2.3 V - - 0.36 V
IO = 3.1 mA; VCC(A) = VCC(Y) = 2.3 V - - 0.50 V
IO = 2.7 mA; VCC(A) = VCC(Y) = 3.0 V - - 0.36 V
IO = 4.0 mA; VCC(A) = VCC(Y) = 3.0 V - - 0.50 V input leakage
current
VI = 0 V to 3.6 V; VCC(A) =VCC(Y)= 1.1Vto 3.6V - - 0.75 A
IOFF power-off
leakage current
A input; VI = 0 V to 3.6 V;
VCC(A) =0V; VCC(Y)=0V to 3.6 V 0.75 A
Y output; VO = 0 V to 3.6 V; VCC(A) =0Vto3.6V;
VI = 0 V or 3.6 V; VCC(Y) =0V 0.75 A
IOFF additional
power-off
leakage current
A input; VI = 0 V to 3.6 V;
VCC(A) =0Vto0.2 V;VCC(Y)= 0 Vto 3.6 V 0.75 A
Y output; VO = 0 V to 3.6 V; VCC(A) =0Vto3.6V;
VI = 0 V or 3.6 V; VCC(Y)=0Vto 0.2 V 0.75 A
ICC supply current port A; VI = GND or VCC(A); IO = 0A
VCC(A) = VCC(Y) = 1.1 V to 3.6 V - - 1.4 A
VCC(A) = 3.6 V; VCC(Y) = 0 V - - 1.4 A
VCC(A) = 0 V; VCC(Y) = 3.6 V - 0.0 - A
port Y; VI = GND or VCC(A); IO = 0A
VCC(A) = VCC(Y) = 1.1 V to 3.6 V - - 1.4 A
VCC(A) = 3.6 V; VCC(Y) = 0 V - 0.0 - A
VCC(A) = 0 V; VCC(Y) = 3.6 V - - 1.4 A
port A and port Y; VI =GND or VCC(A); IO = 0A;
VCC(A) =VCC(Y)= 1.1V to 3.6 V 1.4 A
ICC additional
supply current
A input; VCC(A) = 3.3 V; VCC(Y) = 0 V to 3.6 V; =VCC(A) 0.6 V 75 A
Table 7. Static characteristics …continuedAt recommended operating conditions; voltages are referenced to GND (ground=0V).
NXP Semiconductors 74AUP1T34
Low-power dual supply translating buffer
11. Dynamic characteristicsTable 8. Dynamic characteristicsVoltages are referenced to GND (ground=0 V); for test circuit see Figure9.
CL = 5 pF; VCC(A) = 1.1 V to 1.3 Vtpd propagation delay A to Y; see Figure8 [2]
VCC(Y) = 1.1 V to 1.3 V 2.6 9.8 25.4 2.3 25.9 25.9 ns
VCC(Y) = 1.4 V to 1.6 V 2.4 7.1 15.3 2.2 16.3 16.7 ns
VCC(Y) = 1.65 V to 1.95 V 2.1 6.0 12.7 1.9 13.8 14.3 ns
VCC(Y) = 2.3 V to 2.7 V 2.0 5.1 9.8 2.0 10.5 10.9 ns
VCC(Y) = 3.0 V to 3.6 V 2.1 4.7 8.8 1.9 9.1 9.3 ns
CL = 5 pF; VCC(A) = 1.4 V to 1.6 Vtpd propagation delay A to Y; see Figure8 [2]
VCC(Y) = 1.1 V to 1.3 V 2.3 9.1 23.9 2.0 24.5 24.5 ns
VCC(Y) = 1.4 V to 1.6 V 2.1 6.4 13.6 1.9 14.7 15.2 ns
VCC(Y) = 1.65 V to 1.95 V 1.8 5.3 10.9 1.6 12.1 12.6 ns
VCC(Y) = 2.3 V to 2.7 V 1.7 4.3 7.8 1.6 8.7 9.2 ns
VCC(Y) = 3.0 V to 3.6 V 1.8 3.9 6.6 1.6 7.1 7.5 ns
CL = 5 pF; VCC(A) = 1.65 V to 1.95 Vtpd propagation delay A to Y; see Figure8 [2]
VCC(Y) = 1.1 V to 1.3 V 2.2 8.8 23.2 1.9 23.9 24.0 ns
VCC(Y) = 1.4 V to 1.6 V 2.0 6.0 13.0 1.8 14.1 14.6 ns
VCC(Y) = 1.65 V to 1.95 V 1.8 4.9 10.3 1.5 11.4 12.0 ns
VCC(Y) = 2.3 V to 2.7 V 1.6 3.9 7.2 1.5 8.0 8.5 ns
VCC(Y) = 3.0 V to 3.6 V 1.7 3.5 5.9 1.5 6.4 6.8 ns
CL = 5 pF; VCC(A) = 2.3 V to 2.7 Vtpd propagation delay A to Y; see Figure8 [2]
VCC(Y) = 1.1 V to 1.3 V 2.2 8.4 22.8 1.9 23.4 23.4 ns
VCC(Y) = 1.4 V to 1.6 V 1.9 5.7 12.3 1.8 13.4 14.0 ns
VCC(Y) = 1.65 V to 1.95 V 1.7 4.6 9.6 1.5 10.7 11.2 ns
VCC(Y) = 2.3 V to 2.7 V 1.5 3.5 6.3 1.5 7.2 7.7 ns
VCC(Y) = 3.0 V to 3.6 V 1.6 3.1 5.1 1.4 5.6 6.0 ns
CL = 5 pF; VCC(A) = 3.0 V to 3.6 Vtpd propagation delay A to Y; see Figure8 [2]
VCC(Y) = 1.1 V to 1.3 V 2.2 8.1 22.5 1.9 22.9 22.9 ns
VCC(Y) = 1.4 V to 1.6 V 1.9 5.4 12.0 1.8 12.9 13.4 ns
VCC(Y) = 1.65 V to 1.95 V 1.7 4.3 9.2 1.5 10.2 10.7 ns
VCC(Y) = 2.3 V to 2.7 V 1.5 3.3 6.0 1.5 6.7 7.2 ns
VCC(Y) = 3.0 V to 3.6 V 1.6 2.9 4.8 1.4 5.2 5.5 ns
NXP Semiconductors 74AUP1T34
Low-power dual supply translating buffer
CL = 10 pF; VCC(A) = 1.1 V to 1.3 Vtpd propagation delay A to Y; see Figure8 [2]
VCC(Y) = 1.1 V to 1.3 V 2.6 10.7 27.1 2.5 27.6 27.6 ns
VCC(Y) = 1.4 V to 1.6 V 2.6 7.7 16.7 2.3 17.5 17.6 ns
VCC(Y) = 1.65 V to 1.95 V 2.7 6.6 13.4 2.4 14.2 14.7 ns
VCC(Y) = 2.3 V to 2.7 V 2.2 5.6 10.3 2.2 11.0 11.4 ns
VCC(Y) = 3.0 V to 3.6 V 2.5 5.3 9.5 2.2 9.7 10.0 ns
CL = 10 pF; VCC(A) = 1.4 V to 1.6 Vtpd propagation delay A to Y; see Figure8 [2]
VCC(Y) = 1.1 V to 1.3 V 2.4 10.0 25.6 2.2 26.1 26.1 ns
VCC(Y) = 1.4 V to 1.6 V 2.4 7.0 15.0 2.0 15.8 16.4 ns
VCC(Y) = 1.65 V to 1.95 V 2.4 5.9 11.6 2.1 12.5 13.1 ns
VCC(Y) = 2.3 V to 2.7 V 2.0 4.8 8.4 1.9 9.2 9.7 ns
VCC(Y) = 3.0 V to 3.6 V 2.2 4.4 7.4 1.9 7.7 8.1 ns
CL = 10 pF; VCC(A) = 1.65 V to 1.95 Vtpd propagation delay A to Y; see Figure8
VCC(Y) = 1.1 V to 1.3 V 2.3 9.7 24.8 2.1 25.5 25.7 ns
VCC(Y) = 1.4 V to 1.6 V 2.3 6.6 14.3 2.0 15.3 15.8 ns
VCC(Y) = 1.65 V to 1.95 V 2.3 5.5 11.0 2.0 11.9 12.5 ns
VCC(Y) = 2.3 V to 2.7 V 1.9 4.4 7.7 1.8 8.6 9.0 ns
VCC(Y) = 3.0 V to 3.6 V 2.1 4.0 6.6 1.8 7.1 7.4 ns
CL = 10 pF; VCC(A) = 2.3 V to 2.7 Vtpd propagation delay A to Y; see Figure8 [2]
VCC(Y) = 1.1 V to 1.3 V 2.3 9.3 24.4 2.1 25.1 25.1 ns
VCC(Y) = 1.4 V to 1.6 V 2.2 6.3 13.6 1.9 14.6 15.1 ns
VCC(Y) = 1.65 V to 1.95 V 2.2 5.1 10.3 2.0 11.2 11.7 ns
VCC(Y) = 2.3 V to 2.7 V 1.8 4.1 6.9 1.8 7.7 8.2 ns
VCC(Y) = 3.0 V to 3.6 V 2.0 3.6 5.8 1.7 6.3 6.6 ns
CL = 10 pF; VCC(A) = 3.0 V to 3.6 Vtpd propagation delay A to Y; see Figure8 [2]
VCC(Y) = 1.1 V to 1.3 V 2.3 9.0 24.2 2.1 24.6 24.6 ns
VCC(Y) = 1.4 V to 1.6 V 2.2 6.0 13.3 1.9 14.1 14.6 ns
VCC(Y) = 1.65 V to 1.95 V 2.2 4.9 9.9 2.0 10.6 11.2 ns
VCC(Y) = 2.3 V to 2.7 V 1.8 3.9 6.5 1.8 7.3 7.7 ns
VCC(Y) = 3.0 V to 3.6 V 2.0 3.5 5.4 1.7 5.8 6.2 ns
Table 8. Dynamic characteristics …continuedVoltages are referenced to GND (ground=0 V); for test circuit see Figure9.
NXP Semiconductors 74AUP1T34
Low-power dual supply translating buffer
CL = 15 pF; VCC(A) = 1.1 V to 1.3 Vtpd propagation delay A to Y; see Figure8 [2]
VCC(Y) = 1.1 V to 1.3 V 3.0 11.5 28.6 2.8 29.2 29.2 ns
VCC(Y) = 1.4 V to 1.6 V 3.1 8.3 17.3 2.7 18.6 19.1 ns
VCC(Y) = 1.65 V to 1.95 V 2.8 7.1 14.1 2.7 15.2 15.8 ns
VCC(Y) = 2.3 V to 2.7 V 2.6 6.1 11.1 2.7 11.6 12.1 ns
VCC(Y) = 3.0 V to 3.6 V 2.9 5.7 9.9 2.6 10.3 10.6 ns
CL = 15 pF; VCC(A) = 1.4 V to 1.6 Vtpd propagation delay A to Y; see Figure8 [2]
VCC(Y) = 1.1 V to 1.3 V 2.8 10.8 27.1 2.6 27.7 27.7 ns
VCC(Y) = 1.4 V to 1.6 V 2.8 7.6 15.7 2.4 17.0 17.6 ns
VCC(Y) = 1.65 V to 1.95 V 2.5 6.3 12.3 2.4 13.5 14.1 ns
VCC(Y) = 2.3 V to 2.7 V 2.3 5.3 9.2 2.4 9.9 10.3 ns
VCC(Y) = 3.0 V to 3.6 V 2.6 4.9 7.8 2.3 8.3 8.7 ns
CL = 15 pF; VCC(A) = 1.65 V to 1.95 Vtpd propagation delay A to Y; see Figure8 [2]
VCC(Y) = 1.1 V to 1.3 V 2.7 10.5 26.4 2.5 27.1 27.3 ns
VCC(Y) = 1.4 V to 1.6 V 2.7 7.2 15.0 2.3 16.4 17.0 ns
VCC(Y) = 1.65 V to 1.95 V 2.4 6.0 11.7 2.3 12.8 13.5 ns
VCC(Y) = 2.3 V to 2.7 V 2.2 4.9 8.5 2.2 9.2 9.7 ns
VCC(Y) = 3.0 V to 3.6 V 2.5 4.5 7.1 2.2 7.7 8.0 ns
CL = 15 pF; VCC(A) = 2.3 V to 2.7 Vtpd propagation delay A to Y; see Figure8 [2]
VCC(Y) = 1.1 V to 1.3 V 2.6 10.1 26.0 2.4 26.7 26.7 ns
VCC(Y) = 1.4 V to 1.6 V 2.7 6.9 14.3 2.3 15.7 16.3 ns
VCC(Y) = 1.65 V to 1.95 V 2.4 5.6 10.9 2.2 12.1 12.7 ns
VCC(Y) = 2.3 V to 2.7 V 2.1 4.5 7.6 2.2 8.4 8.9 ns
VCC(Y) = 3.0 V to 3.6 V 2.4 4.1 6.2 2.1 6.8 7.2 ns
CL = 15 pF; VCC(A) = 3.0 V to 3.6 Vtpd propagation delay A to Y; see Figure8 [2]
VCC(Y) = 1.1 V to 1.3 V 2.6 9.8 25.7 2.4 26.2 26.2 ns
VCC(Y) = 1.4 V to 1.6 V 2.7 6.6 14.0 2.3 15.2 15.7 ns
VCC(Y) = 1.65 V to 1.95 V 2.4 5.4 10.5 2.2 11.6 12.1 ns
VCC(Y) = 2.3 V to 2.7 V 2.1 4.3 7.3 2.2 7.9 8.4 ns
VCC(Y) = 3.0 V to 3.6 V 2.4 3.9 5.9 2.1 6.4 6.8 ns
Table 8. Dynamic characteristics …continuedVoltages are referenced to GND (ground=0 V); for test circuit see Figure9.
NXP Semiconductors 74AUP1T34
Low-power dual supply translating buffer
CL = 30 pF; VCC(A) = 1.1 V to 1.3 Vtpd propagation delay A to Y; see Figure8 [2]
VCC(Y) = 1.1 V to 1.3 V 3.7 13.7 32.9 3.5 33.5 33.5 ns
VCC(Y) = 1.4 V to 1.6 V 3.6 9.8 19.5 3.6 20.9 21.4 ns
VCC(Y) = 1.65 V to 1.95 V 3.7 8.4 15.9 3.5 17.0 17.7 ns
VCC(Y) = 2.3 V to 2.7 V 3.0 7.2 12.2 3.4 12.7 13.2 ns
VCC(Y) = 3.0 V to 3.6 V 3.8 6.8 10.9 3.4 12.2 12.5 ns
CL = 30 pF; VCC(A) = 1.4 V to 1.6 Vtpd propagation delay A to Y; see Figure8 [2]
VCC(Y) = 1.1 V to 1.3 V 3.5 13.1 31.5 3.2 32.0 32.0 ns
VCC(Y) = 1.4 V to 1.6 V 3.3 9.1 17.8 3.3 19.2 19.9 ns
VCC(Y) = 1.65 V to 1.95 V 3.4 7.6 14.2 3.2 15.4 16.0 ns
VCC(Y) = 2.3 V to 2.7 V 2.8 6.4 10.3 3.1 11.0 11.5 ns
VCC(Y) = 3.0 V to 3.6 V 3.5 5.9 8.9 3.1 10.1 10.5 ns
CL = 30 pF; VCC(A) = 1.65 V to 1.95 Vtpd propagation delay A to Y; see Figure8 [2]
VCC(Y) = 1.1 V to 1.3 V 3.4 12.7 30.7 3.1 31.5 31.5 ns
VCC(Y) = 1.4 V to 1.6 V 3.2 8.8 17.2 3.2 18.7 19.3 ns
VCC(Y) = 1.65 V to 1.95 V 3.3 7.3 13.5 3.1 14.7 15.4 ns
VCC(Y) = 2.3 V to 2.7 V 2.7 6.0 9.6 3.0 10.4 10.9 ns
VCC(Y) = 3.0 V to 3.6 V 3.4 5.6 8.2 2.9 9.4 9.8 ns
CL = 30 pF; VCC(A) = 2.3 V to 2.7 Vtpd propagation delay A to Y; see Figure8 [2]
VCC(Y) = 1.1 V to 1.3 V 3.3 12.4 30.3 3.1 31.0 31.0 ns
VCC(Y) = 1.4 V to 1.6 V 3.2 8.4 16.5 3.1 18.0 18.7 ns
VCC(Y) = 1.65 V to 1.95 V 3.2 6.9 12.8 3.0 14.0 14.6 ns
VCC(Y) = 2.3 V to 2.7 V 2.6 5.6 8.8 2.9 9.6 10.1 ns
VCC(Y) = 3.0 V to 3.6 V 3.3 5.2 7.3 2.9 8.5 9.0 ns
CL = 30 pF; VCC(A) = 3.0 V to 3.6 Vtpd propagation delay A to Y; see Figure8 [2]
VCC(Y) = 1.1 V to 1.3 V 3.3 12.0 30.0 3.1 30.5 30.5 ns
VCC(Y) = 1.4 V to 1.6 V 3.2 8.1 16.2 3.1 17.5 18.1 ns
VCC(Y) = 1.65 V to 1.95 V 3.2 6.7 12.4 3.0 13.4 14.1 ns
VCC(Y) = 2.3 V to 2.7 V 2.6 5.5 8.5 2.9 9.1 9.6 ns
VCC(Y) = 3.0 V to 3.6 V 3.2 5.0 7.0 2.9 8.1 8.5 ns
Table 8. Dynamic characteristics …continuedVoltages are referenced to GND (ground=0 V); for test circuit see Figure9.