74AUP1G14GW ,Low-power Schmitt trigger inverterFeatures and benefits Wide supply voltage range from 0.8 V to 3.6 V High noise immunity ESD prot ..
74AUP1G157GM ,Low-power 2-input multiplexerFeatures and benefits Wide supply voltage range from 0.8 V to 3.6 V High noise immunity Complies ..
74AUP1G157GW ,Low-power 2-input multiplexerGeneral descriptionThe 74AUP1G157 is a single 2-input multiplexer which selects data from two data ..
74AUP1G17GW ,Low-power Schmitt triggerFeatures and benefits Wide supply voltage range from 0.8 V to 3.6 V High noise immunity ESD prot ..
74AUP1G18GF ,Low-power 1-of-2 demultiplexer with 3-state deselected outputFeatures and benefits Wide supply voltage range from 0.8 V to 3.6 V High noise immunity Complies ..
74AUP1G18GW ,Low-power 1-of-2 demultiplexer with 3-state deselected outputGeneral descriptionThe 74AUP1G18 provides a 1-of-2 non-inverting demultiplexer with 3-state output. ..
74HC595N ,8-bit serial-in, serial or parallel-out shift register with output latches; 3-stateINTEGRATED CIRCUITSDATA SHEETFor a complete data sheet, please also download:• The IC06 74HC/HCT/HC ..
74HC595N. ,8-bit serial-in, serial or parallel-out shift register with output latches; 3-stateAPPLICATIONS storage register.• Serial-to-parallel data conversionThe shift register has a serial i ..
74HC595PW ,8-bit serial-in, serial or parallel-out shift register with output latches; 3-stateFEATURES DESCRIPTION• 8-bit serial input The 74HC/HCT595 are high-speed Si-gate CMOS devicesand are ..
74HC597 ,8-bit shift register with input flip-flops
74HC597 ,8-bit shift register with input flip-flops
74HC597D ,8-bit shift register with input flip-flopsINTEGRATED CIRCUITSDATA SHEETFor a complete data sheet, please also download:• The IC06 74HC/HCT/HC ..
74AUP1G14GM-74AUP1G14GW
Low-power Schmitt trigger inverter
1. General descriptionThe 74AUP1G14 provides a single inverting Schmitt trigger which accepts standard input
signals. It is capable of transforming slowly changing input signals into sharply defined,
jitter-free output signals.
This device ensures a very low static and dynamic power consumption across the entire
VCC range from 0.8 V to 3.6 V.
This device is fully specified for partial Power-down applications using IOFF.
The IOFF circuitry disables the output, preventing the damaging backflow current through
the device when it is powered down.
The inputs switch at different points for positive and negative-going signals. The difference
between the positive voltage VT+ and the negative voltage VT− is defined as the input
hysteresis voltage VH.
2. Features and benefits Wide supply voltage range from 0.8 Vto 3.6V High noise immunity ESD protection: HBM JESD22-A114F Class 3A exceeds 5000V MM JESD22-A115-A exceeds 200V CDM JESD22-C101E exceeds 1000V Low static power consumption; ICC = 0.9 μA (maximum) Latch-up performance exceeds 100 mA per JESD 78 Class II Inputs accept voltages up to 3.6V Low noise overshoot and undershoot < 10 % of VCC IOFF circuitry provides partial Power-down mode operation Multiple package options Specified from −40 °Cto+85 °C and −40 °Cto+125°C
3. Applications Wave and pulse shaper Astable multivibrator Monostable multivibrator
74AUP1G14
Low-power Schmitt trigger inverter
Rev. 6 — 28 June 2012 Product data sheet
NXP Semiconductors 74AUP1G14
Low-power Schmitt trigger inverter
4. Ordering information
5. Marking[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.
6. Functional diagram
Table 1. Ordering information74AUP1G14GW −40 °C to +125 °C TSSOP5 plastic thin shrink small outline package; 5 leads;
body width 1.25 mm
SOT353-1
74AUP1G14GM −40 °C to +125 °C XSON6 plastic extremely thin small outline package; no leads;
6 terminals; body 1× 1.45× 0.5 mm
SOT886
74AUP1G14GF −40 °C to +125 °C XSON6 plastic extremely thin small outline package; no leads;
6 terminals; body 1×1× 0.5 mm
SOT891
74AUP1G14GN −40 °C to +125°C XSON6 extremely thin small outline package; no leads; terminals; body 0.9× 1.0× 0.35 mm
SOT1115
74AUP1G14GS −40 °C to +125°C XSON6 extremely thin small outline package; no leads; terminals; body 1.0× 1.0× 0.35 mm
SOT1202
74AUP1G14GX −40 °C to +125°C X2SON5 X2SON5: plastic thermal enhanced extremely thin
small outline package; no leads; 5 terminals;
body 0.8× 0.8× 0.35 mm
SOT1226
Table 2. Marking74AUP1G14GW pF
74AUP1G14GM pF
74AUP1G14GF pF
74AUP1G14GN pF
74AUP1G14GS pF
74AUP1G14GX pF
NXP Semiconductors 74AUP1G14
Low-power Schmitt trigger inverter
7. Pinning information
7.1 Pinning
7.2 Pin description
Table 3. Pin descriptionn.c. 1 1 not connected 2 2 data input
GND 3 3 ground (0V) 4 4 data output
n.c. - 5 not connected
VCC 5 6 supply voltage
NXP Semiconductors 74AUP1G14
Low-power Schmitt trigger inverter
8. Functional description[1] H= HIGH voltage level;= LOW voltage level.
9. Limiting values[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
[2] For TSSOP5 packages: above 87.5 °C the value of Ptot derates linearly with 4.0 mW/K.
For XSON6 and X2SON5 packages: above 118 °C the value of Ptot derates linearly with 7.8 mW/K.
10. Recommended operating conditions
Table 4. Function table[1]
Table 5. Limiting valuesIn accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).
VCC supply voltage −0.5 +4.6 V
IIK input clamping current VI <0V −50 - mA input voltage [1] −0.5 +4.6 V
IOK output clamping current VO <0V −50 - mA output voltage Active mode and Power-down mode [1] −0.5 +4.6 V output current VO =0 VtoVCC - ±20 mA
ICC supply current - +50 mA
IGND ground current −50 - mA
Tstg storage temperature −65 +150 °C
Ptot total power dissipation Tamb= −40 °C to +125°C [2] -250 mW
Table 6. Recommended operating conditionsVCC supply voltage 0.8 3.6 V input voltage 0 3.6 V output voltage Active mode 0 VCC V
Power-down mode; VCC =0V 0 3.6 V
Tamb ambient temperature −40 +125 °C
NXP Semiconductors 74AUP1G14
Low-power Schmitt trigger inverter
11. Static characteristicsTable 7. Static characteristicsAt recommended operating conditions; voltages are referenced to GND (ground=0V).
Tamb = 25 °CVOH HIGH-level output voltage VI = VT+ or VT−
IO = −20 μA; VCC = 0.8 V to 3.6 V VCC − 0.1 - - V
IO = −1.1 mA; VCC = 1.1 V 0.75 × VCC -- V
IO = −1.7 mA; VCC = 1.4 V 1.11 - - V
IO = −1.9 mA; VCC = 1.65 V 1.32 - - V
IO = −2.3 mA; VCC = 2.3 V 2.05 - - V
IO = −3.1 mA; VCC = 2.3 V 1.9 - - V
IO = −2.7 mA; VCC = 3.0 V 2.72 - - V
IO = −4.0 mA; VCC = 3.0 V 2.6 - - V
VOL LOW-level output voltage VI = VT+ or VT−
IO = 20 μA; VCC = 0.8 V to 3.6 V - - 0.1 V
IO = 1.1 mA; VCC = 1.1 V - - 0.3 × VCC V
IO = 1.7 mA; VCC = 1.4 V - - 0.31 V
IO = 1.9 mA; VCC = 1.65 V - - 0.31 V
IO = 2.3 mA; VCC = 2.3 V - - 0.31 V
IO = 3.1 mA; VCC = 2.3 V - - 0.44 V
IO = 2.7 mA; VCC = 3.0 V - - 0.31 V
IO = 4.0 mA; VCC = 3.0 V - - 0.44 V input leakage current VI = GND to 3.6 V; VCC = 0 V to 3.6 V - - ±0.1 μA
IOFF power-off leakage current VI or VO = 0 V to 3.6 V; VCC = 0 V - - ±0.2 μA
ΔIOFF additional power-off leakage
current
VI or VO = 0 V to 3.6 V;
VCC =0Vto0.2V ±0.2 μA
ICC supply current VI = GND or VCC; IO = 0A;
VCC= 0.8Vto 3.6V 0.5 μA
ΔICC additional supply current VI = VCC − 0.6 V; IO = 0A;
VCC =3.3V 40 μA input capacitance VI = GND or VCC; VCC = 0 V to 3.6 V - 1.1 - pF output capacitance VO = GND; VCC = 0 V - 1.7 - pF
Tamb = −40 °C to +85°C
VOH HIGH-level output voltage VI = VT+ or VT−
IO = −20 μA; VCC = 0.8 V to 3.6 V VCC − 0.1 - - V
IO = −1.1 mA; VCC = 1.1 V 0.7 × VCC -- V
IO = −1.7 mA; VCC = 1.4 V 1.03 - - V
IO = −1.9 mA; VCC = 1.65 V 1.30 - - V
IO = −2.3 mA; VCC = 2.3 V 1.97 - - V
IO = −3.1 mA; VCC = 2.3 V 1.85 - - V
IO = −2.7 mA; VCC = 3.0 V 2.67 - - V
IO = −4.0 mA; VCC = 3.0 V 2.55 - - V
NXP Semiconductors 74AUP1G14
Low-power Schmitt trigger inverterVOL LOW-level output voltage VI = VT+ or VT−
IO = 20 μA; VCC = 0.8 V to 3.6 V - - 0.1 V
IO = 1.1 mA; VCC = 1.1 V - - 0.3 × VCC V
IO = 1.7 mA; VCC = 1.4 V - - 0.37 V
IO = 1.9 mA; VCC = 1.65 V - - 0.35 V
IO = 2.3 mA; VCC = 2.3 V - - 0.33 V
IO = 3.1 mA; VCC = 2.3 V - - 0.45 V
IO = 2.7 mA; VCC = 3.0 V - - 0.33 V
IO = 4.0 mA; VCC = 3.0 V - - 0.45 V input leakage current VI = GND to 3.6 V; VCC = 0 V to 3.6 V - - ±0.5 μA
IOFF power-off leakage current VI or VO = 0 V to 3.6 V; VCC = 0 V - - ±0.5 μA
ΔIOFF additional power-off leakage
current
VI or VO = 0 V to 3.6 V;
VCC =0Vto0.2V ±0.6 μA
ICC supply current VI = GND or VCC; IO = 0A;
VCC= 0.8Vto 3.6V 0.9 μA
ΔICC additional supply current VI = VCC − 0.6 V; IO = 0A;
VCC =3.3V 50 μA
Tamb = −40 °C to +125°C
VOH HIGH-level output voltage VI = VT+ or VT−
IO = −20 μA; VCC = 0.8 V to 3.6 V VCC − 0.11- - V
IO = −1.1 mA; VCC = 1.1 V 0.6 × VCC -- V
IO = −1.7 mA; VCC = 1.4 V 0.93 - - V
IO = −1.9 mA; VCC = 1.65 V 1.17 - - V
IO = −2.3 mA; VCC = 2.3 V 1.77 - - V
IO = −3.1 mA; VCC = 2.3 V 1.67 - - V
IO = −2.7 mA; VCC = 3.0 V 2.40 - - V
IO = −4.0 mA; VCC = 3.0 V 2.30 - - V
VOL LOW-level output voltage VI = VT+ or VT−
IO = 20 μA; VCC = 0.8 V to 3.6 V - - 0.11 V
IO = 1.1 mA; VCC = 1.1 V - - 0.33 × VCCV
IO = 1.7 mA; VCC = 1.4 V - - 0.41 V
IO = 1.9 mA; VCC = 1.65 V - - 0.39 V
IO = 2.3 mA; VCC = 2.3 V - - 0.36 V
IO = 3.1 mA; VCC = 2.3 V - - 0.50 V
IO = 2.7 mA; VCC = 3.0 V - - 0.36 V
IO = 4.0 mA; VCC = 3.0 V - - 0.50 V input leakage current VI = GND to 3.6 V; VCC = 0 V to 3.6 V - - ±0.75 μA
IOFF power-off leakage current VI or VO = 0 V to 3.6 V; VCC = 0 V - - ±0.75 μA
Table 7. Static characteristics …continuedAt recommended operating conditions; voltages are referenced to GND (ground=0V).
NXP Semiconductors 74AUP1G14
Low-power Schmitt trigger inverter
12. Dynamic characteristicsΔIOFF additional power-off leakage
current
VI or VO = 0 V to 3.6 V;
VCC =0Vto0.2V ±0.75 μA
ICC supply current VI = GND or VCC; IO = 0A;
VCC= 0.8Vto 3.6V 1.4 μA
ΔICC additional supply current VI = VCC − 0.6 V; IO = 0A;
VCC =3.3V 75 μA
Table 7. Static characteristics …continuedAt recommended operating conditions; voltages are referenced to GND (ground=0V).
Table 8. Dynamic characteristicsVoltages are referenced to GND (ground=0 V); for test circuit see Figure9.
CL = 5 pFtpd propagation delayAto Y; see Figure8 [2]
VCC = 0.8 V - 19.9 - - - - ns
VCC = 1.1 V to 1.3 V 2.7 5.9 11.0 2.4 11.1 11.2 ns
VCC = 1.4 V to 1.6 V 2.6 4.3 6.6 2.4 7.1 7.4 ns
VCC = 1.65 V to 1.95 V 2.1 3.7 5.4 2.0 6.0 6.2 ns
VCC = 2.3 V to 2.7 V 2.0 3.0 4.1 1.7 4.5 4.7 ns
VCC = 3.0 V to 3.6 V 1.9 2.8 3.6 1.5 3.9 4.0 ns
CL = 10 pFtpd propagation delayAto Y; see Figure8 [2]
VCC = 0.8 V - 23.4 - - - - ns
VCC = 1.1 V to 1.3 V 2.9 6.8 12.7 2.8 12.8 12.9 ns
VCC = 1.4 V to 1.6 V 2.8 5.0 7.7 2.6 8.2 8.6 ns
VCC = 1.65 V to 1.95 V 2.7 4.2 6.2 2.5 6.7 7.1 ns
VCC = 2.3 V to 2.7 V 2.3 3.6 4.8 2.1 5.2 5.5 ns
VCC = 3.0 V to 3.6 V 2.1 3.3 4.3 2.0 4.5 4.7 ns
CL = 15 pFtpd propagation delayAto Y; see Figure8 [2]
VCC = 0.8 V - 26.9 - - - - ns
VCC = 1.1 V to 1.3 V 3.3 7.6 14.3 3.0 14.5 14.7 ns
VCC = 1.4 V to 1.6 V 3.3 5.5 8.6 2.9 9.4 9.8 ns
VCC = 1.65 V to 1.95 V 2.8 4.7 7.0 2.8 7.7 8.1 ns
VCC = 2.3 V to 2.7 V 2.7 4.0 5.5 2.4 5.9 6.2 ns
VCC = 3.0 V to 3.6 V 2.6 3.8 4.8 2.2 5.2 5.4 ns
CL = 30 pF
NXP Semiconductors 74AUP1G14
Low-power Schmitt trigger inverter[1] All typical values are measured at nominal VCC.
[2] tpd is the same as tPLH and tPHL.
[3] CPD is used to determine the dynamic power dissipation (PD in μW). =CPD× VCC2×fi×N+ Σ(CL× VCC2× fo) where:= input frequency in MHz;= output frequency in MHz;= output load capacitance in pF;
VCC= supply voltage in V;= number of inputs switching;
Σ(CL× VCC2×fo)= sum of the outputs.
13. Waveformstpd propagation delayAto Y; see Figure8 [2]
VCC = 0.8 V - 37.3 - - - - ns
VCC = 1.1 V to 1.3 V 4.0 9.8 18.7 3.9 19.6 20.0 ns
VCC = 1.4 V to 1.6 V 3.7 7.1 11.2 3.8 12.3 12.9 ns
VCC = 1.65 V to 1.95 V 3.6 6.0 9.1 3.6 10.0 10.6 ns
VCC = 2.3 V to 2.7 V 3.5 5.2 6.9 3.2 7.5 7.9 ns
VCC = 3.0 V to 3.6 V 3.3 4.8 6.1 3.1 7.1 7.4 ns
CL = 5 pF, 10 pF, 15 pF and 30 pFCPD power dissipation
capacitance
fi = 1 MHz; VI= GND to VCC [3]
VCC = 0.8 V - 2.6 - - - - pF
VCC = 1.1 V to 1.3 V - 2.7 - - - - pF
VCC = 1.4 V to 1.6 V - 2.9 - - - - pF
VCC = 1.65 V to 1.95 V - 3.1 - - - - pF
VCC = 2.3 V to 2.7 V - 3.7 - - - - pF
VCC = 3.0 V to 3.6 V - 4.3 - - - - pF
Table 8. Dynamic characteristics …continuedVoltages are referenced to GND (ground=0 V); for test circuit see Figure9.
NXP Semiconductors 74AUP1G14
Low-power Schmitt trigger inverter[1] For measuring enable and disable times RL = 5 kΩ, for measuring propagation delays, setup and hold times and pulse width RL = 1 MΩ.
14. Transfer characteristics
Table 9. Measurement points0.8 V to 3.6 V 0.5 × VCC 0.5 × VCC VCC ≤ 3.0 ns
Table 10. Test data0.8 V to 3.6 V 5 pF, 10 pF, 15 pF and 30 pF 5 kΩ or 1 MΩ open GND 2 × VCC
Table 11. Transfer characteristicsVoltages are referenced to GND (ground=0 V); for test circuit see Figure9.
Tamb = 25 °C VT+ positive-going
threshold voltage
see Figure 10 and Figure11
VCC = 0.8 V 0.30 - 0.60 V
VCC = 1.1 V 0.53 - 0.90 V
VCC = 1.4 V 0.74 - 1.11 V
VCC = 1.65 V 0.91 - 1.29 V
VCC = 2.3 V 1.37 - 1.77 V
VCC = 3.0 V 1.88 - 2.29 V
NXP Semiconductors 74AUP1G14
Low-power Schmitt trigger inverterVT− negative-going
threshold voltage
see Figure 10 and Figure11
VCC = 0.8 V 0.10 - 0.60 V
VCC = 1.1 V 0.26 - 0.65 V
VCC = 1.4 V 0.39 - 0.75 V
VCC = 1.65 V 0.47 - 0.84 V
VCC = 2.3 V 0.69 - 1.04 V
VCC = 3.0 V 0.88 - 1.24 V hysteresis voltage see Figure 10, Figure 11,
Figure 12 and Figure13
VCC = 0.8 V 0.07 - 0.50 V
VCC = 1.1 V 0.08 - 0.46 V
VCC = 1.4 V 0.18 - 0.56 V
VCC = 1.65 V 0.27 - 0.66 V
VCC = 2.3 V 0.53 - 0.92 V
VCC = 3.0 V 0.79 - 1.31 V
Tamb = −40 °C to +85°C
VT+ positive-going
threshold voltage
see Figure 10 and Figure11
VCC = 0.8 V 0.30 - 0.60 V
VCC = 1.1 V 0.53 - 0.90 V
VCC = 1.4 V 0.74 - 1.11 V
VCC = 1.65 V 0.91 - 1.29 V
VCC = 2.3 V 1.37 - 1.77 V
VCC = 3.0 V 1.88 - 2.29 V
VT− negative-going
threshold voltage
see Figure 10 and Figure11
VCC = 0.8 V 0.10 - 0.60 V
VCC = 1.1 V 0.26 - 0.65 V
VCC = 1.4 V 0.39 - 0.75 V
VCC = 1.65 V 0.47 - 0.84 V
VCC = 2.3 V 0.69 - 1.04 V
VCC = 3.0 V 0.88 - 1.24 V hysteresis voltage see Figure 10, Figure 11,
Figure 12 and Figure13
VCC = 0.8 V 0.07 - 0.50 V
VCC = 1.1 V 0.08 - 0.46 V
VCC = 1.4 V 0.18 - 0.56 V
VCC = 1.65 V 0.27 - 0.66 V
VCC = 2.3 V 0.53 - 0.92 V
VCC = 3.0 V 0.79 - 1.31 V
Table 11. Transfer characteristics …continuedVoltages are referenced to GND (ground=0 V); for test circuit see Figure9.
NXP Semiconductors 74AUP1G14
Low-power Schmitt trigger inverter
15. Waveforms transfer characteristics
Tamb = −40 °C to +125°C
VT+ positive-going
threshold voltage
see Figure 10 and Figure11
VCC = 0.8 V 0.30 - 0.62 V
VCC = 1.1 V 0.53 - 0.92 V
VCC = 1.4 V 0.74 - 1.13 V
VCC = 1.65 V 0.91 - 1.31 V
VCC = 2.3 V 1.37 - 1.80 V
VCC = 3.0 V 1.88 - 2.32 V
VT− negative-going
threshold voltage
see Figure 10 and Figure11
VCC = 0.8 V 0.10 - 0.60 V
VCC = 1.1 V 0.26 - 0.65 V
VCC = 1.4 V 0.39 - 0.75 V
VCC = 1.65 V 0.47 - 0.84 V
VCC = 2.3 V 0.69 - 1.04 V
VCC = 3.0 V 0.88 - 1.24 V hysteresis voltage see Figure 10, Figure 11,
Figure 12 and Figure13
VCC = 0.8 V 0.07 - 0.50 V
VCC = 1.1 V 0.08 - 0.46 V
VCC = 1.4 V 0.18 - 0.56 V
VCC = 1.65 V 0.27 - 0.66 V
VCC = 2.3 V 0.53 - 0.92 V
VCC = 3.0 V 0.79 - 1.31 V
Table 11. Transfer characteristics …continuedVoltages are referenced to GND (ground=0 V); for test circuit see Figure9.
NXP Semiconductors 74AUP1G14
Low-power Schmitt trigger inverter