74AUP1G00GM ,Low-power 2-input NAND gateLogic diagram74AUP1G00 All information provided in this document is subject to legal disclaimers. ..
74AUP1G00GW ,Low-power 2-input NAND gateFeatures and benefits Wide supply voltage range from 0.8 V to 3.6 V High noise immunity Complies ..
74AUP1G00GW ,Low-power 2-input NAND gateGeneral descriptionThe 74AUP1G00 provides the single 2-input NAND function.Schmitt-trigger action a ..
74AUP1G02GW ,Low-power 2-input NOR-gateFeatures and benefits Wide supply voltage range from 0.8 V to 3.6 V High noise immunity Complies ..
74AUP1G04GM ,Low-power inverterGeneral descriptionThe 74AUP1G04 provides the single inverting buffer.Schmitt trigger action at all ..
74AUP1G04GW ,Low-power inverterFeatures and benefits Wide supply voltage range from 0.8 V to 3.6 V High noise immunity Complies ..
74HC595DB ,8-bit serial-in, serial or parallel-out shift register with output latches; 3-stateFEATURES DESCRIPTION• 8-bit serial input The 74HC/HCT595 are high-speed Si-gate CMOS devicesand are ..
74HC595N ,8-bit serial-in, serial or parallel-out shift register with output latches; 3-stateINTEGRATED CIRCUITSDATA SHEETFor a complete data sheet, please also download:• The IC06 74HC/HCT/HC ..
74HC595N. ,8-bit serial-in, serial or parallel-out shift register with output latches; 3-stateAPPLICATIONS storage register.• Serial-to-parallel data conversionThe shift register has a serial i ..
74HC595PW ,8-bit serial-in, serial or parallel-out shift register with output latches; 3-stateFEATURES DESCRIPTION• 8-bit serial input The 74HC/HCT595 are high-speed Si-gate CMOS devicesand are ..
74HC597 ,8-bit shift register with input flip-flops
74HC597 ,8-bit shift register with input flip-flops
74AUP1G00GM-74AUP1G00GW
Low-power 2-input NAND gate
1. General descriptionThe 74AUP1G00 provides the single 2-input NAND function.
Schmitt-trigger action at all inputs makes the circuit tolerant to slower input rise and fall
times across the entire VCC range from 0.8 V to 3.6 V.
This device ensures a very low static and dynamic power consumption across the entire
VCC range from 0.8 V to 3.6 V.
This device is fully specified for partial Power-down applications using IOFF.
The IOFF circuitry disables the output, preventing the damaging backflow current through
the device when it is powered down.
2. Features and benefits Wide supply voltage range from 0.8 Vto 3.6V High noise immunity Complies with JEDEC standards: JESD8-12 (0.8 Vto 1.3 V) JESD8-11 (0.9 Vto 1.65V) JESD8-7 (1.2 Vto 1.95V) JESD8-5 (1.8 Vto 2.7V) JESD8-B (2.7 Vto 3.6V) ESD protection: HBM JESD22-A114F Class 3A exceeds 5000V MM JESD22-A115-A exceeds 200V CDM JESD22-C101E exceeds 1000V Low static power consumption; ICC = 0.9 μA (maximum) Latch-up performance exceeds 100 mA per JESD 78 Class II Inputs accept voltages up to 3.6V Low noise overshoot and undershoot < 10 % of VCC IOFF circuitry provides partial Power-down mode operation Multiple package options Specified from −40 °Cto+85 °C and −40 °Cto+125°C
74AUP1G00
Low-power 2-input NAND gate
Rev. 6 — 27 June 2012 Product data sheet
NXP Semiconductors 74AUP1G00
Low-power 2-input NAND gate
3. Ordering information
4. Marking[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.
5. Functional diagram
Table 1. Ordering information74AUP1G00GW −40 °C to +125 °C TSSOP5 plastic thin shrink small outline package; 5 leads;
body width 1.25 mm
SOT353-1
74AUP1G00GM −40 °C to +125 °C XSON6 plastic extremely thin small outline package; no leads;
6 terminals; body 1× 1.45× 0.5 mm
SOT886
74AUP1G00GF −40 °C to +125 °C XSON6 plastic extremely thin small outline package; no leads;
6 terminals; body 1×1× 0.5 mm
SOT891
74AUP1G00GN −40 °C to +125°C XSON6 extremely thin small outline package; no leads; terminals; body 0.9× 1.0× 0.35 mm
SOT1115
74AUP1G00GS −40 °C to +125°C XSON6 extremely thin small outline package; no leads; terminals; body 1.0× 1.0× 0.35 mm
SOT1202
74AUP1G00GX −40 °C to +125°C X2SON5 X2SON5: plastic thermal enhanced extremely thin
small outline package; no leads; 5 terminals;
body 0.8× 0.8× 0.35 mm
SOT1226
Table 2. Marking74AUP1G00GW pA
74AUP1G00GM pA
74AUP1G00GF pA
74AUP1G00GN pA
74AUP1G00GS pA
74AUP1G00GX pA
NXP Semiconductors 74AUP1G00
Low-power 2-input NAND gate
6. Pinning information
6.1 Pinning
6.2 Pin description
Table 3. Pin description 1 1 data input 2 2 data input
GND 3 3 ground (0V) 4 4 data output
n.c. - 5 not connected
VCC 5 6 supply voltage
NXP Semiconductors 74AUP1G00
Low-power 2-input NAND gate
7. Functional description[1] H= HIGH voltage level; L= LOW voltage level.
8. Limiting values[1] The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed.
[2] For TSSOP5 packages: above 87.5 °C the value of Ptot derates linearly with 4.0 mW/K.
For XSON6 and X2SON5 packages: above 118 °C the value of Ptot derates linearly with 7.8 mW/K.
9. Recommended operating conditions
Table 4. Function table[1]LLH H H
HHL
Table 5. Limiting valuesIn accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).
VCC supply voltage −0.5 +4.6 V
IIK input clamping current VI <0V −50 - mA input voltage [1] −0.5 +4.6 V
IOK output clamping current VO <0V −50 - mA output voltage Active mode [1] −0.5 VCC +0.5 V
Power-down mode [1] −0.5 +4.6 V output current VO =0 VtoVCC - ±20 mA
ICC supply current - +50 mA
IGND ground current −50 - mA
Tstg storage temperature −65 +150 °C
Ptot total power dissipation Tamb= −40 °C to +125°C [2]- 250 mW
Table 6. Recommended operating conditionsVCC supply voltage 0.8 3.6 V input voltage 0 3.6 V output voltage Active mode 0 VCC V
Power-down mode; VCC =0V 0 3.6 V
Tamb ambient temperature −40 +125 °C
Δt/ΔV input transition rise and fall rate VCC= 0.8 V to 3.6V 0 200 ns/V
NXP Semiconductors 74AUP1G00
Low-power 2-input NAND gate
10. Static characteristicsTable 7. Static characteristicsAt recommended operating conditions; voltages are referenced to GND (ground=0V).
Tamb = 25 °CVIH HIGH-level input voltage VCC = 0.8 V 0.70 × VCC -- V
VCC = 0.9 V to 1.95 V 0.65 × VCC -- V
VCC = 2.3 V to 2.7 V 1.6 - - V
VCC = 3.0 V to 3.6 V 2.0 - - V
VIL LOW-level input voltage VCC = 0.8 V - - 0.30 × VCCV
VCC = 0.9 V to 1.95 V - - 0.35 × VCCV
VCC = 2.3 V to 2.7 V - - 0.7 V
VCC = 3.0 V to 3.6 V - - 0.9 V
VOH HIGH-level output voltage VI = VIH or VIL
IO = −20 μA; VCC = 0.8 V to 3.6 V VCC − 0.1- - V
IO = −1.1 mA; VCC = 1.1 V 0.75 × VCC -- V
IO = −1.7 mA; VCC = 1.4 V 1.11 - - V
IO = −1.9 mA; VCC = 1.65 V 1.32 - - V
IO = −2.3 mA; VCC = 2.3 V 2.05 - - V
IO = −3.1 mA; VCC = 2.3 V 1.9 - - V
IO = −2.7 mA; VCC = 3.0 V 2.72 - - V
IO = −4.0 mA; VCC = 3.0 V 2.6 - - V
VOL LOW-level output voltage VI = VIH or VIL
IO = 20 μA; VCC = 0.8 V to 3.6 V - - 0.1 V
IO = 1.1 mA; VCC = 1.1 V - - 0.3 × VCC V
IO = 1.7 mA; VCC = 1.4 V - - 0.31 V
IO = 1.9 mA; VCC = 1.65 V - - 0.31 V
IO = 2.3 mA; VCC = 2.3 V - - 0.31 V
IO = 3.1 mA; VCC = 2.3 V - - 0.44 V
IO = 2.7 mA; VCC = 3.0 V - - 0.31 V
IO = 4.0 mA; VCC = 3.0 V - - 0.44 V input leakage current VI = GND to 3.6 V; VCC = 0 V to 3.6 V - - ±0.1 μA
IOFF power-off leakage current VI or VO = 0 V to 3.6 V; VCC = 0 V - - ±0.2 μA
ΔIOFF additional power-off
leakage current
VI or VO = 0 V to 3.6 V;
VCC =0Vto0.2V ±0.2 μA
ICC supply current VI = GND or VCC; IO = 0A;
VCC= 0.8Vto 3.6V 0.5 μA
ΔICC additional supply current VI = VCC − 0.6 V; IO = 0A;
VCC =3.3V
[1] -- 40 μA input capacitance VCC = 0 V to 3.6 V; VI = GND or VCC -0.8 -pF output capacitance VO = GND; VCC = 0 V - 1.7 - pF
NXP Semiconductors 74AUP1G00
Low-power 2-input NAND gate
Tamb = −40 °C to +85°C
VIH HIGH-level input voltage VCC = 0.8 V 0.70 × VCC -- V
VCC = 0.9 V to 1.95 V 0.65 × VCC -- V
VCC = 2.3 V to 2.7 V 1.6 - - V
VCC = 3.0 V to 3.6 V 2.0 - - V
VIL LOW-level input voltage VCC = 0.8 V - - 0.30 × VCCV
VCC = 0.9 V to 1.95 V - - 0.35 × VCCV
VCC = 2.3 V to 2.7 V - - 0.7 V
VCC = 3.0 V to 3.6 V - - 0.9 V
VOH HIGH-level output voltage VI = VIH or VIL
IO = −20 μA; VCC = 0.8 V to 3.6 V VCC − 0.1- - V
IO = −1.1 mA; VCC = 1.1 V 0.7 × VCC -- V
IO = −1.7 mA; VCC = 1.4 V 1.03 - - V
IO = −1.9 mA; VCC = 1.65 V 1.30 - - V
IO = −2.3 mA; VCC = 2.3 V 1.97 - - V
IO = −3.1 mA; VCC = 2.3 V 1.85 - - V
IO = −2.7 mA; VCC = 3.0 V 2.67 - - V
IO = −4.0 mA; VCC = 3.0 V 2.55 - - V
VOL LOW-level output voltage VI = VIH or VIL
IO = 20 μA; VCC = 0.8 V to 3.6 V - - 0.1 V
IO = 1.1 mA; VCC = 1.1 V - - 0.3 × VCC V
IO = 1.7 mA; VCC = 1.4 V - - 0.37 V
IO = 1.9 mA; VCC = 1.65 V - - 0.35 V
IO = 2.3 mA; VCC = 2.3 V - - 0.33 V
IO = 3.1 mA; VCC = 2.3 V - - 0.45 V
IO = 2.7 mA; VCC = 3.0 V - - 0.33 V
IO = 4.0 mA; VCC = 3.0 V - - 0.45 V input leakage current VI = GND to 3.6 V; VCC = 0 V to 3.6 V - - ±0.5 μA
IOFF power-off leakage current VI or VO = 0 V to 3.6 V; VCC = 0 V - - ±0.5 μA
ΔIOFF additional power-off
leakage current
VI or VO = 0 V to 3.6 V;
VCC =0Vto0.2V ±0.6 μA
ICC supply current VI = GND or VCC; IO = 0A;
VCC= 0.8Vto 3.6V 0.9 μA
ΔICC additional supply current VI = VCC − 0.6 V; IO = 0A;
VCC =3.3V
[1] -- 50 μA
Table 7. Static characteristics …continuedAt recommended operating conditions; voltages are referenced to GND (ground=0V).
NXP Semiconductors 74AUP1G00
Low-power 2-input NAND gate[1] One input at VCC − 0.6 V, other input at VCC or GND.
Tamb = −40 °C to +125°C
VIH HIGH-level input voltage VCC = 0.8 V 0.75 × VCC -- V
VCC = 0.9 V to 1.95 V 0.70 × VCC -- V
VCC = 2.3 V to 2.7 V 1.6 - - V
VCC = 3.0 V to 3.6 V 2.0 - - V
VIL LOW-level input voltage VCC = 0.8 V - - 0.25 × VCCV
VCC = 0.9 V to 1.95 V - - 0.30 × VCCV
VCC = 2.3 V to 2.7 V - - 0.7 V
VCC = 3.0 V to 3.6 V - - 0.9 V
VOH HIGH-level output voltage VI = VIH or VIL
IO = −20 μA; VCC = 0.8 V to 3.6 V VCC − 0.11- - V
IO = −1.1 mA; VCC = 1.1 V 0.6 × VCC -- V
IO = −1.7 mA; VCC = 1.4 V 0.93 - - V
IO = −1.9 mA; VCC = 1.65 V 1.17 - - V
IO = −2.3 mA; VCC = 2.3 V 1.77 - - V
IO = −3.1 mA; VCC = 2.3 V 1.67 - - V
IO = −2.7 mA; VCC = 3.0 V 2.40 - - V
IO = −4.0 mA; VCC = 3.0 V 2.30 - - V
VOL LOW-level output voltage VI = VIH or VIL
IO = 20 μA; VCC = 0.8 V to 3.6 V - - 0.11 V
IO = 1.1 mA; VCC = 1.1 V - - 0.33 × VCCV
IO = 1.7 mA; VCC = 1.4 V - - 0.41 V
IO = 1.9 mA; VCC = 1.65 V - - 0.39 V
IO = 2.3 mA; VCC = 2.3 V - - 0.36 V
IO = 3.1 mA; VCC = 2.3 V - - 0.50 V
IO = 2.7 mA; VCC = 3.0 V - - 0.36 V
IO = 4.0 mA; VCC = 3.0 V - - 0.50 V input leakage current VI = GND to 3.6 V; VCC = 0 V to 3.6 V - - ±0.75 μA
IOFF power-off leakage current VI or VO = 0 V to 3.6 V; VCC = 0 V - - ±0.75 μA
ΔIOFF additional power-off
leakage current
VI or VO = 0 V to 3.6 V;
VCC =0Vto0.2V ±0.75 μA
ICC supply current VI = GND or VCC; IO = 0A;
VCC= 0.8Vto 3.6V 1.4 μA
ΔICC additional supply current VI = VCC − 0.6 V; IO = 0A;
VCC =3.3V
[1] -- 75 μA
Table 7. Static characteristics …continuedAt recommended operating conditions; voltages are referenced to GND (ground=0V).
NXP Semiconductors 74AUP1G00
Low-power 2-input NAND gate
11. Dynamic characteristicsTable 8. Dynamic characteristicsVoltages are referenced to GND (ground=0 V); for test circuit see Figure9
Tamb = 25 °C; CL = 5 pFtpd propagation delay A, B to Y; see Figure8 [2]
VCC = 0.8 V - 17.5 - ns
VCC = 1.1 V to 1.3 V 2.5 5.3 11.0 ns
VCC = 1.4 V to 1.6 V 2.0 3.8 6.8 ns
VCC = 1.65 V to 1.95 V 1.6 3.1 5.3 ns
VCC = 2.3 V to 2.7 V 1.3 2.5 4.0 ns
VCC = 3.0 V to 3.6 V 1.0 2.2 3.6 ns
Tamb = 25 °C; CL = 10 pFtpd propagation delay A, B to Y; see Figure8 [2]
VCC = 0.8 V - 21.0 - ns
VCC = 1.1 V to 1.3 V 2.4 6.1 13.0 ns
VCC = 1.4 V to 1.6 V 2.4 4.4 7.9 ns
VCC = 1.65 V to 1.95 V 2.0 3.7 6.2 ns
VCC = 2.3 V to 2.7 V 1.4 3.0 4.7 ns
VCC = 3.0 V to 3.6 V 1.3 2.8 4.3 ns
Tamb = 25 °C; CL = 15 pFtpd propagation delay A, B to Y; see Figure8 [2]
VCC = 0.8 V - 24.5 - ns
VCC = 1.1 V to 1.3 V 3.4 6.9 14.8 ns
VCC = 1.4 V to 1.6 V 2.8 5.0 8.9 ns
VCC = 1.65 V to 1.95 V 2.0 4.1 7.0 ns
VCC = 2.3 V to 2.7 V 1.7 3.5 5.3 ns
VCC = 3.0 V to 3.6 V 1.6 3.2 4.9 ns
Tamb = 25 °C; CL = 30 pFtpd propagation delay A, B to Y; see Figure8 [2]
VCC = 0.8 V - 34.8 - ns
VCC = 1.1 V to 1.3 V 4.6 9.2 20.1 ns
VCC = 1.4 V to 1.6 V 3.0 6.5 11.8 ns
VCC = 1.65 V to 1.95 V 2.6 5.4 9.3 ns
VCC = 2.3 V to 2.7 V 2.4 4.6 7.1 ns
VCC = 3.0 V to 3.6 V 2.3 4.3 6.5 ns
NXP Semiconductors 74AUP1G00
Low-power 2-input NAND gate[1] All typical values are measured at nominal VCC.
[2] tpd is the same as tPLH and tPHL.
[3] CPD is used to determine the dynamic power dissipation (PD in μW). =CPD× VCC2×fi×N+ Σ(CL× VCC2× fo) where:= input frequency in MHz;= output frequency in MHz;= output load capacitance in pF;
VCC= supply voltage in V;= number of inputs switching;
Σ(CL× VCC2×fo)= sum of the outputs.
Tamb = 25 °CCPD power dissipation capacitance f = 1 MHz; VI= GND to VCC [3]
VCC = 0.8 V - 2.6 - pF
VCC = 1.1 V to 1.3 V - 2.8 - pF
VCC = 1.4 V to 1.6 V - 2.9 - pF
VCC = 1.65 V to 1.95 V - 3.1 - pF
VCC = 2.3 V to 2.7 V - 3.6 - pF
VCC = 3.0 V to 3.6 V - 4.2 - pF
Table 8. Dynamic characteristics …continuedVoltages are referenced to GND (ground=0 V); for test circuit see Figure9
Table 9. Dynamic characteristicsVoltages are referenced to GND (ground=0 V); for test circuit see Figure9
CL = 5 pFtpd propagation delay A, B to Y; see Figure8 [1]
VCC = 1.1 V to 1.3 V 2.1 12.2 2.1 13.5 ns
VCC = 1.4 V to 1.6 V 1.8 7.8 1.8 8.6 ns
VCC = 1.65 V to 1.95 V 1.4 6.2 1.4 6.9 ns
VCC = 2.3 V to 2.7 V 1.1 4.7 1.1 5.2 ns
VCC = 3.0 V to 3.6 V 1.0 4.2 1.0 4.7 ns
CL = 10 pFtpd propagation delay A, B to Y; see Figure8 [1]
VCC = 1.1 V to 1.3 V 2.2 14.4 2.2 15.9 ns
VCC = 1.4 V to 1.6 V 2.2 9.2 2.2 10.2 ns
VCC = 1.65 V to 1.95 V 1.9 7.3 1.9 8.1 ns
VCC = 2.3 V to 2.7 V 1.3 5.6 1.3 6.2 ns
VCC = 3.0 V to 3.6 V 1.2 4.9 1.2 5.4 ns
NXP Semiconductors 74AUP1G00
Low-power 2-input NAND gate[1] tpd is the same as tPLH and tPHL.
12. Waveforms
CL = 15 pFtpd propagation delay A, B to Y; see Figure8 [1]
VCC = 1.1 V to 1.3 V 3.1 16.5 3.1 18.2 ns
VCC = 1.4 V to 1.6 V 2.5 10.5 2.5 11.6 ns
VCC = 1.65 V to 1.95 V 2.0 8.3 2.0 9.2 ns
VCC = 2.3 V to 2.7 V 1.5 6.4 1.5 7.1 ns
VCC = 3.0 V to 3.6 V 1.4 5.7 1.4 6.3 ns
CL = 30 pFtpd propagation delay A, B to Y; see Figure8 [1]
VCC = 1.1 V to 1.3 V 4.1 22.6 4.1 24.9 ns
VCC = 1.4 V to 1.6 V 2.9 14.0 2.9 15.4 ns
VCC = 1.65 V to 1.95 V 2.3 11.1 2.3 12.3 ns
VCC = 2.3 V to 2.7 V 2.1 8.5 2.1 9.4 ns
VCC = 3.0 V to 3.6 V 2.1 7.6 2.1 8.4 ns
Table 9. Dynamic characteristics …continuedVoltages are referenced to GND (ground=0 V); for test circuit see Figure9
Table 10. Measurement points0.8 V to 3.6 V 0.5 × VCC 0.5 × VCC VCC ≤ 3.0 ns
NXP Semiconductors 74AUP1G00
Low-power 2-input NAND gate[1] For measuring enable and disable times RL = 5 kΩ, for measuring propagation delays, setup and hold times and pulse width RL = 1 MΩ.
Table 11. Test data0.8 V to 3.6 V 5 pF, 10 pF, 15 pF and 30 pF 5 kΩ or 1 MΩ open GND 2 × VCC