IC Phoenix
 
Home ›  779 > 74AHC3G14DP-74AHCT3G14DP,Triple inverting Schmitt trigger
74AHC3G14DP-74AHCT3G14DP Fast Delivery,Good Price
Part Number:
If you need More Quantity or Better Price,Welcom Any inquiry.
We available via phone +865332716050 Email
Partno Mfg Dc Qty AvailableDescript
74AHC3G14DPNXP/PHILN/a9000avai74AHC3G14; 74AHCT3G14; Inverting Schmitt trigger
74AHCT3G14DPNXP/PHILN/a12000avaiTriple inverting Schmitt trigger


74AHCT3G14DP ,Triple inverting Schmitt triggerLogic diagram (one Schmitt trigger)74AHC_AHCT3G14 All information provided in this document is subj ..
74AHCT541D ,Octal buffer/line driver; 3-stateINTEGRATED CIRCUITSDATA SHEET74AHC541; 74AHCT541Octal buffer/line driver; 3-stateProduct specificati ..
74AHCT541PW ,Octal buffer/line driver; 3-stateINTEGRATED CIRCUITSDATA SHEET74AHC541; 74AHCT541Octal buffer/line driver; 3-stateProduct specificati ..
74AHCT573 ,Octal D-type transparent latch; 3-stateFEATURES DESCRIPTION• ESD protection: The 74AHC/AHCT573 are high-speed Si-gate CMOS devices and are ..
74AHCT573PW ,Octal D-type transparant latch; 3-stateINTEGRATED CIRCUITSDATA SHEET74AHC573; 74AHCT573Octal D-type transparent latch;3-stateProduct speci ..
74AHCT573PW ,Octal D-type transparant latch; 3-stateFeatures and benefits Balanced propagation delays All inputs have a Schmitt trigger action Commo ..
74HC4020N ,14-stage binary ripple counterLogic diagram6. Pinning information6.1 Pinning 74HC402074HCT4020terminal 1index area74HC402074HCT40 ..
74HC4020N ,14-stage binary ripple counterGeneral descriptionThe 74HC4020; 74HCT4020 are high-speed Si-gate CMOS devices and are pin compatib ..
74HC4020N ,14-stage binary ripple counterFEATURES The 74HC/HCT4020 are 14-stage binary ripple counterswith a clock input (CP), an overriding ..
74HC4020PW ,14-stage binary ripple counterFEATURES The 74HC/HCT4020 are 14-stage binary ripple counterswith a clock input (CP), an overriding ..
74HC4024D ,7-stage binary ripple counterGeneral descriptionThe 74HC4024 is a 7-stage binary ripple counter with a clock input (CP), an over ..
74HC4024DB ,74HC4024; 7-stage binary ripple counter74HC40247-stage binary ripple counterRev. 03 — 12 November 2004 Product data sheet1.


74AHC3G14DP-74AHCT3G14DP
Triple inverting Schmitt trigger
1. General description
74AHC3G14 and 74AHCT3G14 are high-speed Si-gate CMOS devices. They provide
three inverting buffers with Schmitt trigger action. These devices are capable of
transforming slowly changing input signals into sharply defined, jitter-free output signals.
The AHC device has CMOS input switching levels and supply voltage range 2 V to 5.5 V.
The AHCT device has TTL input switching levels and supply voltage range 4.5 V to 5.5 V.
2. Features and benefits
Symmetrical output impedance High noise immunity ESD protection: HBM JESD22-A114F exceeds 2000V MM JESD22-A115-A exceeds 200 V CDM JESD22-C101D exceeds 1000V Low power dissipation Balanced propagation delays Multiple package options Specified from 40 Cto+85 C and 40 Cto+125C
3. Applications
Wave and pulse shaper for highly noisy environment Astable multivibrator Monostable multivibrator
74AHC3G14; 74AHCT3G14
Triple inverting Schmitt trigger
Rev. 8 — 13 May 2013 Product data sheet
NXP Semiconductors 74AHC3G14; 74AHCT3G14
Triple inverting Schmitt trigger
4. Ordering information

5. Marking

[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.
6. Functional diagram

Table 1. Ordering information

74AHC3G14DP 40 C to +125 C TSSOP8 plastic thin shrink small outline package; 8 leads;
body width 3 mm; lead length 0.5 mm
SOT505-2
74AHCT3G14DP
74AHC3G14DC 40 C to +125 C VSSOP8 plastic very thin shrink small outline package; 8 leads;
body width 2.3 mm
SOT765-1
74AHCT3G14DC
74AHC3G14GT 40 C to +125 C XSON8 plastic extremely thin small outline package; no leads;
8 terminals; body 1 1.95 0.5 mm
SOT833-1
74AHCT3G14GT
74AHC3G14GD 40 C to +125 C XSON8 plastic extremely thin small outline package; no leads; terminals; body 3  2  0.5 mm
SOT996-2
74AHCT3G14GD
Table 2. Marking codes

74AHC3G14DP A14
74AHCT3G14DP C14
74AHC3G14DC A14
74AHCT3G14DC C14
74AHC3G14GT A14
74AHCT3G14GT C14
74AHC3G14GD A14
74AHCT3G14GD C14
NXP Semiconductors 74AHC3G14; 74AHCT3G14
Triple inverting Schmitt trigger
7. Pinning information
7.1 Pinning

7.2 Pin description

Table 3. Pin description

1A, 2A, 3A 1, 3, 6 data input
GND 4 ground (0 V) , 2Y, 3Y 7, 5, 2 data output
VCC 8 supply voltage
NXP Semiconductors 74AHC3G14; 74AHCT3G14
Triple inverting Schmitt trigger
8. Functional description

[1] H= HIGH voltage level; L= LOW voltage level
9. Limiting values

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
[2] For TSSOP8 package: above 55 C the value of Ptot derates linearly at 2.5 mW/K.
For VSSOP8 package: above 110 C the value of Ptot derates linearly at 8 mW/K.
For XSON8 packages: above 118 C the value of Ptot derates linearly with 7.8 mW/K.
10. Recommended operating conditions

Table 4. Function table[1]

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).
VCC supply voltage 0.5 +7.0 V input voltage 0.5 +7.0 V
IIK input clamping current VI < 0.5 V 20 - mA
IOK output clamping current VO < 0.5 V or VO >VCC +0.5V [1]- 20 mA output current 0.5 V < VO ICC supply current - 75 mA
IGND ground current 75 - mA
Tstg storage temperature 65 +150 C
Ptot total power dissipation Tamb = 40Cto +125 C [2]- 250 mW
Table 6. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V).
VCC supply voltage 2.0 5.0 5.5 4.5 5.0 5.5 V input voltage 0 - 5.5 0 - 5.5 V output voltage 0 - VCC 0- VCC V
Tamb ambient temperature 40 +25 +125 40 +25 +125 C
NXP Semiconductors 74AHC3G14; 74AHCT3G14
Triple inverting Schmitt trigger
11. Static characteristics
Table 7. Static characteristics
Voltages are referenced to GND (ground = 0 V).
74AHC3G14

VOH HIGH-level
output voltage = VT+ or VT = 50 A; VCC= 2.0 V 1.9 2.0 - 1.9 - 1.9 - V = 50 A; VCC= 3.0 V 2.9 3.0 - 2.9 - 2.9 - V = 50 A; VCC= 4.5 V 4.4 4.5 - 4.4 - 4.4 - V = 4.0 mA; VCC= 3.0 V 2.58 - - 2.48 - 2.40 - V = 8.0 mA; VCC= 4.5 V 3.94 - - 3.8 - 3.70 - V
VOL LOW-level
output voltage = VT+ or VT = 50 A; VCC= 2.0 V - 0 0.1 - 0.1 - 0.1 V = 50 A; VCC= 3.0 V - 0 0.1 - 0.1 - 0.1 V = 50 A; VCC= 4.5 V - 0 0.1 - 0.1 - 0.1 V = 4.0 mA; VCC= 3.0 V - - 0.36 - 0.44 - 0.55 V = 8.0 mA; VCC= 4.5 V - - 0.36 - 0.44 - 0.55 V input leakage
current= 5.5Vor GND;
VCC =0 Vto 5.5V - 0.1 - 1.0 - 2.0 A
ICC supply currentVI =VCCor GND; IO = 0 A;
VCC= 5.5 V - 1.0 - 10 - 40 A input
capacitance 1.5 10 - 10 - 10 pF
74AHCT3G14

VOH HIGH-level
output voltage = VT+ or VT; VCC= 4.5 V = 50A 4.4 4.5 - 4.4 - 4.4 - V = 8.0 mA 3.94 - - 3.8 - 3.70 - V
VOL LOW-level
output voltage = VT+ or VT; VCC= 4.5 V = 50A - 0 0.1 - 0.1 - 0.1 V = 8.0 mA - - 0.36 - 0.44 - 0.55 V input leakage
current= 5.5Vor GND;
VCC =0 Vto 5.5V - 0.1 - 1.0 - 2.0 A
ICC supply currentVI =VCCor GND; IO = 0 A;
VCC= 5.5 V - 1.0 - 10 - 40 A
ICC additional
supply current
per input pin; VI =3.4V;
other inputs at VCCor GND; =0 A; VCC = 5.5 V - 1.35 - 1.5 - 1.5 mA input
capacitance 1.5 10 - 10 - 10 pF
NXP Semiconductors 74AHC3G14; 74AHCT3G14
Triple inverting Schmitt trigger
11.1 Transfer characteristics

12. Dynamic characteristics

Table 8. Transfer characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V). See Figure 9 and Figure 10.
74AHC3G14

VT+ positive-going
threshold
voltage
VCC = 3.0 V - - 2.2 - 2.2 - 2.2 V
VCC = 4.5 V - - 3.15 - 3.15 - 3.15 V
VCC = 5.5 V - - 3.85 - 3.85 - 3.85 V
VT negative-going
threshold
voltage
VCC = 3.0 V 0.9 - - 0.9 - 0.9 - V
VCC = 4.5 V 1.35 - - 1.35 - 1.35 - V
VCC = 5.5 V 1.65 - - 1.65 - 1.65 - V hysteresis
voltage
VCC = 3.0 V 0.3 - 1.2 0.3 1.2 0.25 1.2 V
VCC = 4.5 V 0.4 - 1.4 0.4 1.4 0.35 1.4 V
VCC = 5.5 V 0.5 - 1.6 0.5 1.6 0.45 1.6 V
74AHCT3G14

VT+ positive-going
threshold
voltage
VCC = 4.5 V - - 2.0 - 2.0 - 2.0 V
VCC = 5.5 V - - 2.0 - 2.0 - 2.0 V
VT negative-going
threshold
voltage
VCC = 4.5 V 0.5 - - 0.5 - 0.5 - V
VCC = 5.5 V 0.6 - - 0.6 - 0.6 - V hysteresis
voltage
VCC = 4.5 V 0.4 - 1.4 0.4 1.4 0.35 1.4 V
VCC = 5.5 V 0.4 - 1.6 0.4 1.6 0.35 1.6 V
Table 9. Dynamic characteristics

GND = 0 V; tr = tf  3.0 ns; for test circuit see Figure8.
74AHC3G14

tpd propagation
delay
nA to nY; see Figure7 [1]
VCC = 3.0 V to 3.6 V [2]= 15 pF - 4.2 12.8 1.0 15.0 1.0 16.5 ns= 50 pF - 6.0 16.3 1.0 18.5 1.0 20.5 ns
VCC = 4.5 V to 5.5 V [3]= 15 pF - 3.2 8.6 1.0 10.0 1.0 11.0 ns= 50 pF - 4.6 10.6 1.0 12.0 1.0 13.5 ns
CPD power
dissipation
capacitance
per buffer; =50pF;fi =1 MHz; =GNDto VCC
[4] -10- - - - - pF
NXP Semiconductors 74AHC3G14; 74AHCT3G14
Triple inverting Schmitt trigger

[1] tpd is the same as tPLH and tPHL.
[2] Typical values are measured at VCC = 3.3 V.
[3] Typical values are measured at VCC = 5.0 V.
[4] CPD is used to determine the dynamic power dissipation PD (W). =CPD VCC2fi+(CL VCC2fo) where:= input frequency in MHz;= output frequency in MHz;= output load capacitance in pF;
VCC= supply voltage in V;
(CL VCC2fo)= sum of the outputs.
13. Waveforms

74AHCT3G14

tpd propagation
delay
nA to nY;
VCC= 4.5Vto 5.5V
[1]
[3]= 15 pF - 4.1 7.0 1.0 8.0 1.0 9.0 ns= 50 pF - 5.9 8.5 1.0 10.0 1.0 11.0 ns
CPD power
dissipation
capacitance
per buffer; =50pF;fi =1 MHz; =GNDto VCC
[4] -12- - - - - pF
Table 9. Dynamic characteristics …continued

GND = 0 V; tr = tf  3.0 ns; for test circuit see Figure8.
Table 10. Test data

74AHC3G14 GND to VCC 0.5  VCC 0.5  VCC
74AHCT3G14 GND to 3.0 V 1.5 V 0.5  VCC
NXP Semiconductors 74AHC3G14; 74AHCT3G14
Triple inverting Schmitt trigger
13.1 Transfer characteristic waveforms

NXP Semiconductors 74AHC3G14; 74AHCT3G14
Triple inverting Schmitt trigger

NXP Semiconductors 74AHC3G14; 74AHCT3G14
Triple inverting Schmitt trigger
14. Application information

The slow input rise and fall times cause additional power dissipation, which can be
calculated using the following formula:
Padd =fi(tr ICC(AV) +tf ICC(AV)) VCC where:
Padd= additional power dissipation (W);= input frequency (MHz);= input rise time (ns); 10 %to 90 %;= input fall time (ns); 90 %to 10 %;
ICC(AV)= average additional supply current (A).
ICC(AV) differs with positive or negative input transitions, as shown in Figure 16
and Figure 17.
For 74AHC3G14 and 74AHCT3G14 used in relaxation oscillator circuit, see Figure 18.
Note to the application information:
All values given are typical unless otherwise specified.
ic,good price


TEL:86-533-2716050      FAX:86-533-2716790
   

©2020 IC PHOENIX CO.,LIMITED