IC Phoenix logo

Home ›  E  › E1 > EL2140

EL2140 from ELANTEC

Fast Delivery, Competitive Price @IC-phoenix

If you need more electronic components or better pricing, we welcome any inquiry.

EL2140

Manufacturer: ELANTEC

150MHz, Differential Twisted-Pair Driver, Fixed Gain Amplifier

Partnumber Manufacturer Quantity Availability
EL2140 ELANTEC 500 In Stock

Description and Introduction

150MHz, Differential Twisted-Pair Driver, Fixed Gain Amplifier The EL2140 is a high-speed operational amplifier manufactured by ELANTEC. Below are the key specifications:

- **Manufacturer**: ELANTEC  
- **Type**: High-Speed Operational Amplifier  
- **Bandwidth**: 100 MHz  
- **Slew Rate**: 1000 V/µs  
- **Supply Voltage**: ±5V to ±15V  
- **Input Offset Voltage**: 5 mV (max)  
- **Input Bias Current**: 10 µA (max)  
- **Gain Bandwidth Product**: 100 MHz  
- **Output Current**: 50 mA  
- **Operating Temperature Range**: -40°C to +85°C  
- **Package**: 8-Pin DIP, SOIC  

These are the factual specifications for the EL2140 as provided by ELANTEC.

Application Scenarios & Design Considerations

150MHz, Differential Twisted-Pair Driver, Fixed Gain Amplifier# EL2140 High-Speed Operational Amplifier Technical Documentation

*Manufacturer: ELANTEC*

## 1. Application Scenarios

### Typical Use Cases
The EL2140 is a high-speed current feedback operational amplifier designed for applications requiring wide bandwidth and fast settling times. Primary use cases include:

 Video Signal Processing 
- RGB video amplifiers and distribution systems
- HDTV signal conditioning circuits
- Video line drivers and cable drivers
- Professional broadcast equipment interfaces

 High-Speed Data Acquisition 
- Flash ADC input buffers and drivers
- Sample-and-hold circuits
- Active filter stages in high-frequency systems
- Instrumentation front-end amplifiers

 Communication Systems 
- RF/IF signal processing stages
- Modulator/demodulator circuits
- Baseband signal conditioning
- Fiber optic receiver amplifiers

### Industry Applications

 Professional Broadcasting & AV 
- Studio production equipment
- Video switchers and routers
- Digital signage systems
- Medical imaging display interfaces

 Test & Measurement 
- Oscilloscope vertical amplifiers
- Spectrum analyzer input stages
- Arbitrary waveform generator outputs
- High-speed data logger front ends

 Industrial Control 
- High-speed process control systems
- Machine vision camera interfaces
- Robotics control signal conditioning
- Real-time monitoring equipment

### Practical Advantages and Limitations

 Advantages: 
- 100 MHz bandwidth (G = +2) enables high-frequency operation
- 1000 V/μs slew rate supports fast signal transitions
- Current feedback architecture provides consistent bandwidth across gains
- ±5V to ±15V supply range offers design flexibility
- Low differential gain/phase error (0.02%/0.02°) ideal for video applications

 Limitations: 
- Higher power consumption (25 mA typical) compared to general-purpose op-amps
- Requires careful PCB layout for optimal performance
- Limited output current (±60 mA) may require buffering for heavy loads
- Not suitable for low-frequency, precision applications due to higher input offset voltage

## 2. Design Considerations

### Common Design Pitfalls and Solutions

 Oscillation Issues 
- *Problem:* High-frequency ringing or oscillation due to improper compensation
- *Solution:* Include small series resistors (10-50Ω) at output, ensure proper power supply decoupling

 Stability Problems 
- *Problem:* Instability with capacitive loads > 50pF
- *Solution:* Use isolation resistor (10-100Ω) between output and capacitive load

 Thermal Management 
- *Problem:* Excessive heating in high-speed applications
- *Solution:* Provide adequate PCB copper area for heat dissipation, consider thermal vias

### Compatibility Issues with Other Components

 Power Supply Requirements 
- Requires well-regulated ±5V to ±15V supplies
- Incompatible with single-supply operation without level shifting
- Power supply sequencing not critical but recommended

 Input/Output Compatibility 
- Input common-mode range: ±3.5V with ±5V supplies
- Output swing: Typically within 2V of supply rails
- Compatible with standard logic levels when properly biased

 Passive Component Selection 
- Feedback resistors: Use 100Ω to 1kΩ range for optimal performance
- Avoid wirewound resistors due to parasitic inductance
- Use high-quality ceramic or film capacitors for decoupling

### PCB Layout Recommendations

 Power Supply Decoupling 
- Place 0.1μF ceramic capacitors within 5mm of each power pin
- Include 10μF tantalum capacitors for bulk decoupling
- Use separate ground planes for analog and digital sections

 Signal Routing 
- Keep feedback components close to amplifier pins
- Minimize trace lengths for high-frequency signals
- Use controlled impedance routing for critical paths

 Thermal Management 
- Provide adequate copper area around device package
- Use thermal vias for heat dissipation in multilayer boards
-

Request Quotation

For immediate assistance, call us at +86 533 2716050 or email [email protected]

Part Number Quantity Target Price($USD) Email Contact Person
We offer highly competitive channel pricing. Get in touch for details.

Specializes in hard-to-find components chips