IC Phoenix
 
Home ›  TT26 > TDA7564B,Intelligent high efficiency (class SB) quad BTL ouput with full I2C diagnostics (turn on, permanent, ac)
TDA7564B Fast Delivery,Good Price
Part Number:
If you need More Quantity or Better Price,Welcom Any inquiry.
We available via phone +865332716050 Email
Partno Mfg Dc Qty AvailableDescript
TDA7564BSTMN/a19avaiIntelligent high efficiency (class SB) quad BTL ouput with full I2C diagnostics (turn on, permanent, ac)


TDA7564B ,Intelligent high efficiency (class SB) quad BTL ouput with full I2C diagnostics (turn on, permanent, ac)features, its superior efficiency ■ DC offset detectionperformance coming from the internal exclusi ..
TDA7565 ,QUAD POWER AMPLIFIER WITH BUILT-IN VOLTAGE CONVERTERELECTRICAL CHARACTERISTICS (Refer to the test circuit, V = 13.5V; R = 4Ω; f = 1KHz; Voltage convert ..
TDA7566 ,MULTIFUNCTION QUAD POWER AMPLIFIER WITH BUILT-IN DIAGNOSTICS FEATURESELECTRICAL CHARACTERISTICS (Refer to the test circuit, V = 14.4V; R = 4Ω; f = 1KHz; G = 26dB; T = 2 ..
TDA7570 ,Single or dual PWM BTL outputTDA7570250W PWM high efficiency power audio amplifier
TDA7571 , STPDACsw - Fully digital high efficiency power audio amplifier
TDA7575 ,MULTIFUNCTION DUAL BRIDGE POWER AMPLIFIER WITH INTEGRATED DIGITAL DIAGNOSTICSfeatures, its superior efficiency perfor-■ FULL FAULT PROTECTIONmance coming from the internal excl ..
THS4141IDGNR ,Fully Differential Input/Output High Slew Rate AmplifierSLOS320F–MAY 2000–REVISED JANUARY 2006These devices have limited built-in ESD protection. The leads ..
THS4150CD ,Fully Differential Input/Output High Slew Rate Amplifier With Shutdown.. SLOS321G–MAY 2000–REVISED MARCH 2009DISSIPATION RATING TABLE(2)(1)POWER RATINGθ θJA JCPACKAGE(°C ..
THS4150CDGN ,Fully Differential Input/Output High Slew Rate Amplifier With ShutdownFEATURESTHS4150THS4151D, DGN, DGK PACKAGESD, DGN, DGK PACKAGES23• High Performance(TOP VIEW)(TOP VI ..
THS4150CDR ,Fully Differential Input/Output High Slew Rate Amplifier With Shutdownmaximum ratings may cause permanent damage to the device. These are stress ratingsonly, and functio ..
THS4150ID ,Fully Differential Input/Output High Slew Rate Amplifier With ShutdownELECTRICAL CHARACTERISTICSAt V = 15 V, R = 800Ω, T = 25°C (unless otherwise noted).CC L APARAMETER ..
THS4151CD ,Fully Differential Input/Output High Slew Rate AmplifierFEATURESTHS4150THS4151D, DGN, DGK PACKAGESD, DGN, DGK PACKAGES23• High Performance(TOP VIEW)(TOP VI ..


TDA7564B
Intelligent high efficiency (class SB) quad BTL ouput with full I2C diagnostics (turn on, permanent, ac)
September 2013 Doc ID 12734 Rev 4 1/34
TDA7564B

4 x 50W multifunction quad power amplifier
with built-in diagnostics feature
Features
Multipower BCD technology MOSFET output power stage DMOS power output New high efficiency (class SB) High output power capability 4x28 W/4  @
14.4 V, 1 kHz, 10 % THD, 4x50 W max, power Max. output power 4x72 W/2  Full I2 C bus driving: Standby Independent front/rear soft play/mute Selectable gain (for low noise line output
function) High efficiency enable/disable2 C bus digital diagnostics (including AC
and DC load detection) Full fault protection DC offset detection Four independent short circuit protection Clipping detector (2 %/10 %) Linear thermal shutdown with multiple thermal
warning ESD protection
Description

The TDA7564B is a new BCD technology quad
bridge type of car radio amplifier in Flexiwatt25 /
PowerSO36 package specially intended for car
radio applications.
Thanks to the DMOS output stage the TDA7564B
has a very low distortion allowing a clear powerful
sound. Among the features, its superior efficiency
performance coming from the internal exclusive
structure, makes it the most suitable device to
simplify the thermal management in high power
sets.
The dissipated output power under average
listening condition is in fact reduced up to 50%
when compared to the level provided by
conventional class AB solutions. This device is
equipped with a full diagnostics array that
communicates the status of each speaker through
the I2 C bus.

Table 1. Device summary
Contents TDA7564B
2/34 Doc ID 12734 Rev 4
Contents Block diagrams and application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pins description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Diagnostics functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1 T urn-on diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Permanent diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Output DC offset detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4 AC diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Multiple faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1 Faults availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.1 I2C programming/reading sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Fast muting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 C bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
8.1 Data validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
8.2 Start and stop conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
8.3 Byte format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
8.4 Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Software specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Examples of bytes sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
TDA7564B Contents
Doc ID 12734 Rev 4 3/34 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
List of tables TDA7564B
4/34 Doc ID 12734 Rev 4
List of tables

Table 1. Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 3. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 4. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 5. Double fault table for turn-on diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 6. IB1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 7. IB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 8. DB1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 9. DB2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 10. DB3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 11. DB4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 12. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
TDA7564B List of figures
Doc ID 12734 Rev 4 5/34
List of figures

Figure 1. Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 2. Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 3. Flexiwatt25 pins connection diagram (top of view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 4. PowerSO36 (slug-up) pins connection diagram (top of view). . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 5. Quiescent current vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 6. Output power vs. supply voltage (4 W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 7. Output power vs. supply voltage (2 W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 8. Distortion vs. output power (4 W, STD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 9. Distortion vs. output power (4 , HI-EFF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 10. Distortion vs. output power (2 , STD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 11. Distortion vs. frequency (4 W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 12. Distortion vs. frequency (2 W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 13. Crosstalk vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 14. Supply voltage rejection vs. freq. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 15. Power dissipation and efficiency vs. output power (4 W, STD, SINE) . . . . . . . . . . . . . . . . 13
Figure 16. Power dissipation and efficiency vs. output power (4 , Hi-eff, SINE) . . . . . . . . . . . . . . . . 13
Figure 17. Power dissipation vs. average output power (audio program simulation, 4 W) . . . . . . . . . 13
Figure 18. Power dissipation vs. average output power (audio program simulation, 2 W) . . . . . . . . . 13
Figure 19. Turn - on diagnostic: working principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 20. SVR and output behavior (case 1: without turn-on diagnostic). . . . . . . . . . . . . . . . . . . . . . 14
Figure 21. SVR and output pin behavior (case 2: with turn-on diagnostic) . . . . . . . . . . . . . . . . . . . . . 15
Figure 22. Short circuit detection thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 23. Load detection thresholds - high gain setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 24. Load detection threshold - low gain setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 25. Restart timing without diagnostic enable (permanent) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 26. Restart timing with diagnostic enable (permanent). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 27. Current detection high: load impedance |Z| vs. output peak voltage . . . . . . . . . . . . . . . . . 18
Figure 28. Current detection low: load impedance |Z| vs. output peak voltage . . . . . . . . . . . . . . . . . . 18
Figure 29. Thermal foldback diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 30. Data validity on the I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 31. Timing diagram on the I2C bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 32. Acknowledge on the I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 33. Flexiwatt25 (horizontal) mechanical data and package dimensions. . . . . . . . . . . . . . . . . . 30
Figure 34. Flexiwatt25 (vertical) mechanical data and package dimensions. . . . . . . . . . . . . . . . . . . . 31
Figure 35. PowerSO36 (slug up) mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . 32
Block diagrams and application circuit TDA7564B Doc ID 12734 Rev 4 Block diagrams and application circuit
Figure 1. Block diagram
Figure 2. Application circuit
TDA7564B Pins description
Doc ID 12734 Rev 4 7/34
2 Pins description
Figure 3. Flexiwatt25 pins connection diagram (top of view)
Figure 4. PowerSO36 (slug-up) pins connection diagram (top of view)
Electrical specifications TDA7564B
8/34 Doc ID 12734 Rev 4
3 Electrical specifications
3.1 Absolute maximum ratings


3.2 Thermal data


3.3 Electrical characteristics

Refer to the test circuit, VS = 14.4 V; RL = 4 ; f = 1 kHz; GV = 30 dB; Tamb = 25 °C; unless
otherwise specified.

Table 2. Absolute maximum ratings
Table 3. Thermal data
Table 4. Electrical characteristics
TDA7564B Electrical specifications
Doc ID 12734 Rev 4 9/34
Table 4. Electrical characteristics (continued)
Electrical specifications TDA7564B
10/34 Doc ID 12734 Rev 4
Table 4. Electrical characteristics (continued)
TDA7564B Electrical specifications
3.4 Electrical characteristics curves
Figure 5. Quiescent current vs. supply
voltage
Figure 6. Output power vs. supply voltage
)
Figure 7. Output power vs. supply voltage
)
Figure 8. Distortion vs. output power (4 ,
STD)
Table 4. Electrical characteristics (continued)
Electrical specifications TDA7564B
Figure 9. Distortion vs. output power (4 , HI-
EFF)
Figure 10. Distortion vs. output power (2 ,
STD)
Figure 11. Distortion vs. frequency (4 ) Figure 12. Distortion vs. frequency (2 )
Figure 13. Crosstalk vs. frequency Figure 14. Supply voltage rejection vs. freq.
TDA7564B Electrical specifications
Figure 15. Power dissipation and efficiency vs.
output power (4 , STD, SINE)
Figure 16. Power dissipation and efficiency vs.
output power (4 , Hi-eff, SINE)
Figure 17. Power dissipation vs. average
output power (audio program
simulation, 4 )
Figure 18. Power dissipation vs. average
output power (audio program
simulation, 2 )
Diagnostics functional description TDA7564B Doc ID 12734 Rev 4 Diagnostics functional description
4.1 Turn-on diagnostic

It is activated at the turn-on (standby out) under I2 C bus request. Detectable output faults
are: Short to GND Short to Vs Short across the speaker Open speaker o verify if any of the above misconnections are in place, a subsonic (inaudible) current
pulse (Figure 19) is internally generated, sent through the speaker(s) and sunk back.The urn-on diagnostic status is internally stored until a successive diagnostic pulse is
requested (after a I2 C reading).
If the "standby out" and "diag. enable" commands are both given through a single
programming step, the pulse takes place first (power stage still in standby mode, low,
outputs = high impedance).
Afterwards, when the amplifier is biased, the permanent diagnostic takes place. The
previous turn-on state is kept until a short appears at the outputs.
Figure 19. Turn - on diagnostic: working principle

Figure 20 and 21 show SVR and output waveforms at the turn-on (standby out) with and
without turn-on diagnostic.
Figure 20. SVR and output behavior (case 1: without turn-on diagnostic)
TDA7564B Diagnostics functional description
Doc ID 12734 Rev 4 15/34
Figure 21. SVR and output pin behavior (case 2: with turn-on diagnostic)

The information related to the outputs status is read and memorized at the end of the
current pulse top. The acquisition time is 100 ms (typ.). No audible noise is generated in the
process. As for short to GND / Vs the fault-detection thresholds remain unchanged from 26
dB to 12 dB gain setting. They are as follows:
Figure 22. Short circuit detection thresholds

Concerning short across the speaker / open speaker, the threshold varies from 26 dB to 12
dB gain setting, since different loads are expected (either normal speaker's impedance or
high impedance). The values in case of 26 dB gain are as follows:
Figure 23. Load detection thresholds - high gain setting

If the line-driver mode (Gv= 12 dB and Line Driver Mode diagnostic = 1) is selected, the
same thresholds will change as follows:
Figure 24. Load detection threshold - low gain setting
Diagnostics functional description TDA7564B
16/34 Doc ID 12734 Rev 4
4.2 Permanent diagnostics

Detectable conventional faults are: Short to GND
–Short to VS Short across the speaker
The following additional features are provided: Output offset detection
The TDA7564B has 2 operating statuses: Restart mode. The diagnostic is not enabled. Each audio channel operates
independently from each other. If any of the a.m. faults occurs, only the channel(s)
interested is shut down. A check of the output status is made every 1 ms (Figure 25).
Restart takes place when the overload is removed.
2. Diagnostic mode. It is enabled via I2 C bus and self activates if an output overload
(such to cause the intervention of the short-circuit protection) occurs to the speakers
outputs. Once activated, the diagnostics procedure develops as follows (Figure 26): To avoid momentary re-circulation spikes from giving erroneous diagnostics, a
check of the output status is made after 1ms: if normal situation (no overloads) is
detected, the diagnostic is not performed and the channel returns back active. Instead, if an overload is detected during the check after 1 ms, then a diagnostic
cycle having a duration of about 100 ms is started. After a diagnostic cycle, the audio channel interested by the fault is switched to
restart mode. The relevant data are stored inside the device and can be read by
the microprocessor. When one cycle has terminated, the next one is activated by
an I2 C reading. This is to ensure continuous diagnostics throughout the car-radio
operating time. To check the status of the device a sampling system is needed. The timing is
chosen at microprocessor level (over half a second is recommended).
Figure 25. Restart timing without diagnostic enable (permanent) - Each 1mS time, a
sampling of the fault is done
Figure 26. Restart timing with diagnostic enable (permanent)
TDA7564B Diagnostics functional description
Doc ID 12734 Rev 4 17/34
4.3 Output DC offset detection

Any DC output offset exceeding ±2 V are signalled out. This inconvenient might occur as a
consequence of initially defective or aged and worn-out input capacitors feeding a DC
component to the inputs, so putting the speakers at risk of overheating.
This diagnostic has to be performed with low-level output AC signal (or Vin = 0).
The test is run with selectable time duration by microprocessor (from a "start" to a "stop"
command): Start = Last reading operation or setting IB1 - D5 - (offset enable) to 1 Stop = Actual reading operation
Excess offset is signalled out if persistent throughout the assigned testing time. This feature
is disabled if any overloads leading to activation of the short-circuit protection occurs in the
process.
4.4 AC diagnostic

It is targeted at detecting accidental disconnection of tweeters in 2-way speaker and, more
in general, presence of capacitive (AC) coupled loads.
This diagnostic is based on the notion that the overall speaker's impedance (woofer +
parallel tweeter) will tend to increase towards high frequencies if the tweeter gets
disconnected, because the remaining speaker (woofer) would be out of its operating range
(high impedance). The diagnostic decision is made according to peak output current
thresholds, and it is enabled by setting (IB2-D2) = 1. Two different detection levels are
available: High current threshold IB2 (D7) = 0
Iout > 500 mApk = normal status
Iout < 250 mApk = open tweeter Low current threshold IB2 (D7) = 1
Iout > 250 mApk = normal status
Iout < 125 mApk = open tweeter o correctly implement this feature, it is necessary to briefly provide a signal tone (with the
amplifier in "play") whose frequency and magnitude are such to determine an output current
higher than 500 mApk with IB2(D7)=0 (higher than 250mApk with IB2(D7)=1) in normal
conditions and lower than 250 mApk with IB2(D7)=0 (lower than 125 mApk with IB2(D7)=1)
should the parallel tweeter be missing.
The test has to last for a minimum number of 3 sine cycles starting from the activation of the
AC diagnostic function IB2) up to the I2 C reading of the results (measuring period). To
confirm presence of tweeter, it is necessary to find at least 3 current pulses over the above
threadless over all the measuring period, else an "open tweeter" message will be issued.
The frequency / magnitude setting of the test tone depends on the impedance
characteristics of each specific speaker being used, with or without the tweeter connected
(to be calculated case by case). High-frequency tones (> 10 kHz) or even ultrasonic signals
are recommended for their negligible acoustic impact and also to maximize the impedance
module's ratio between with tweeter-on and tweeter-off.
Figure 27 shows the load impedance as a function of the peak output voltage and the
relevant diagnostic fields.
ic,good price


TEL:86-533-2716050      FAX:86-533-2716790
   

©2020 IC PHOENIX CO.,LIMITED