IC Phoenix
 
Home ›  TT6 > TA8884AN,RGB PROCESSOR IC
TA8884AN Fast Delivery,Good Price
Part Number:
If you need More Quantity or Better Price,Welcom Any inquiry.
We available via phone +865332716050 Email
Partno Mfg Dc Qty AvailableDescript
TA8884ANTOSHIBAN/a5avaiRGB PROCESSOR IC


TA8884AN ,RGB PROCESSOR ICTA8884ANTARRRAAN.W9gr9gr9gr-.-The TA8884AN is an RGB processor IC for digital-analogsystem color TV ..
TA8889AP ,RGB CUT OFF DRIVE CONTROL ICTA8889APTARRRQAP.IVVV'The TA8889AP is 16pin DIP package IC which has RGBCut off/Drive control circu ..
TA8889AP ,RGB CUT OFF DRIVE CONTROL ICTA8889APTARRRQAP.IVVV'The TA8889AP is 16pin DIP package IC which has RGBCut off/Drive control circu ..
TA8891N ,AKB (AUTOMATIC KINESCOPE BIAS) IC
TA8891N ,AKB (AUTOMATIC KINESCOPE BIAS) IC
TA8899AF ,FM DEMODULATION IC FOR BRODCASTING SATELLITE RECEIVERTA8899AFTARRQQAF.W9gr9grttiftti.TA8899AF combines the necessary function on a singlemonolithic inte ..
TC7136CKW , LOW POWER, 3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTERS
TC7136CPL , LOW POWER, 3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTERS
TC7136CPL , LOW POWER, 3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTERS
TC7136CPL , LOW POWER, 3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTERS
TC71COA , MICROMASTER - SYSTEM SUPERVISOR WITH POWER SUPPLY MONITOR, WATCHDOG AND BATTERY BACKUP
TC72-3.3MUATR , Digital Temperature Sensor with SPI™ Interface


TA8884AN
RGB PROCESSOR IC
TOSHIBA
TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC
TA8884AN
RGB PROCESSOR IC
The TA8884AN is an RGB processor IC for digital-analog
system color TV. TA8884AN organizes digital-analog TV
system by combined with TC90A02F or TC90A06F (Digital
VCD IC: TOSHIBA Product). Input signals are Luminance
signal and color difference signals which have been
demodulated by digital IC. And RGB primary color signals
are outputted.
TA8884AN contains IZC bus, so various control and setting
of various function can be digital-controled through the
bus line.
FEATURES
Video stage
Super real transient
Black expansion
Luminance y correction
High-bright color
DC restoration
Chroma stage
Output of primary color signals
Cut-off, drive adjustment
Color detail emphasis
Changing of relative phase and relative amplitude
Color y correction
Automatic correction of flesh tone
ACC circuit
RGB stage
On screen display interface
Analog RGB interface
Fast blanking
TA8884AN
'--, "*‘iiiiiiiiii‘iiiiiiiwi ''t' u
SDlP54-P-600-1.78
Weight : 5.44g (Typ.)
TOSHIBA
BLOCK DIAGRAM
TA8884AN
from AV SW lc
. . I ---w
rom D‘mzsv to VM to Digital from AV 3 " ,
IC ' . .
A 0V Circuit iC SW IC 1 Clamp from BPF
PulseIBlack Digital DAC Output DAC Output
7 ''rmk Det. a dt 53 (5D IC 1 m 45 a
I I l l 3;; ACC Gain
y Input -- Pulse Y om ACC -r- 47
- Clamp DAC
Clam In ut for VM Am -, . .
p CLP P cu: p MY-- to Digital IC
QIVlnput
p from Digital IE
IIU Input
Black Clamp "@HH
" nsion
'-sse--- pa
I Halftone
= Dynann: 7
" 'd.il AB" "t " Correction Flesh H mane D Test Output
3 I f Color I D
" l-tU Color
Black Peak Hold DC Transfer Muto D
44' culaliun Q-DV Color
I Transfer Mute D VCC 12V
3-ll-@ Fitter DL I I D
Adjust Mode -
I I PAL, MUSEINTSC SW
fo--ol1Hx I h Cttntrtt D FL WC: 2 2v
Ceramic, Hilki hl-R 'tea'' E '
Resonator ' Tint
= " g Brightness Sub a '
ABL Control onirast uni-Color
“BL” t-a 8 Uni-Color Uni- I I
ACL Control "l" Color .-gy-o-t for Color Limiter
34% Y Clamp G Matrix,
6 Relative Phase Selection
WPS I I l
' Ci-. Pc Bus "t'" Relative Amplitude
Interface Hi-Bright Selection (ry-o-t R-Y Clamp
- . 11 DIA i i '
1 u. Color Color R
I ' . Color Differential Clamp 5 H B-Y Clamp
SCLSDA R --ar-Ear-o Analog r. C" Monitor = Limiter '
G H 5 - -. RGB - output 2
Fe Input Contrast RGB I it-Y , D
a ryr-18- Clamp Brightness Correction
34 7 E I RGB CDE D GND
ACL Matrix H
l I Color Differential Max. D
Level Detection O
””6 9 l GND
M : VMIYs RGit SW 050 Interface
Vs W '
RGB Black
Cut Off Insert
15 R68 BLK RGB Blue L Picture
Output Insert Drive Back Mute
14 l 8 Q5) Q1) 17
MC. fourm Fast
to 1T,rL-e" Drive V. BLK to 17agiue-,g,', (OSD)
TA8884AN - 2
TOSHIBA
TA8884AN
TERMINAL CONNECTION DIAGRAM
DAC Output 1 (2
DAC Output 2 c.
DAC Output 3 (2
Test 1 (i?
B-Y Clamp G)
ft Vcc GD
Sand Castle Pulse Input CD
Blanking Input C
_ GND (2
SDA (iii
SCL (ii)
GND 3 (iii
R Output Ci
G Output Ci)
B Output (iii
Vcc 3 @
oso YS Input Ci
OSD R Input (iii
OSD G Input (iii
OSD B Input @
Video Mute (i?
Analog RGB YM Input Ci)
Analog RGB YS Input (ii
Analog R Input (i?
Analog G Input Ci)
Analog B Input Ci;
RGB Contrast (i?
TA8884AN
ED R-Y Clamp
59 Video Input
® GND 1
ED Clamp DC
D Video Output
Ci)) Vcc 1
219 Chroma Output
D ACC DC
(ii) GND 2
Cii) Chroma Input
D Black Peak Hold
g) Black Expansion Point
g) DC Restoration Ratio
21) Y Input
(ii)) Dynamic ABL Input
(ii) Vcc 2
D Y Output for VM
D Filter Adjustment
Cis) 4MHz Ceramics
Ci) Monitor Output
Ci? Q/B-Y Input
Cii) IIR-Y Input
Cis) Color
Ci)) Y Clamp
(ii) Test 2
D Brightness
8) Uni-Color
TOSHIBA
TERMINAL FUNCTION
TA8884AN
my PIN NAME FUNCTION INTERFACE CIRCUIT
1 DAC Output 1 The terminals for 1 bit DAC Output. 1
2 DAC Output 2 Controlled by PC bus. When the data 'jo- 200Q
3 DAC Output 3 is "I", this terminal's voltage is 0V. It 1
The terminal for test of this IC.
4 Test 1 Please use this IC with this terminal
The terminals for a filter to clamp R- h" S
Y and B-Y signals. Pedestal levels of "-uf2-t
5 B-Y Clamp R-Y, B-Y and G-Y signal are made 540 .
54 R-Y Clamp . . 5
equal by the internal clamping
circuit. 1: If, C) g
6 IZL VCC VCC ef I L c.ircyt Please supply 2.2V -
to this terminal.
The terminal for input of sand castle 2r ()3
Sand Castle pulse (Black peak detection pulse + 11(0';
7 Pulse In ut clamp pulse). Threshold levels of CD-,
p B.P.D pulse and C. pulse are 2.1V and
3.5V. ar ctr, fly I:
The terminal for input of horizontal I j, ifK o
8 Blanking Pulse and vertical blanking pulse. Threshold co ttp. - ' 0
Input levels of H.B. pulse and VB. pulse ' L: Ji-,
are 4.0V and 1.4V. "
. I" Iv
TOSH I BA TA8884AN
[I'). PIN NAME FUNCTION INTERFACE CIRCUIT
9 PL GND Ground of PL circuit. -
10 SDA The terminals for IZC bus input and
11 SCL output. Input threshold level is 2.3V.
Ground of RGB interface part,color-
12 GND 3 defference demodulation circuit and -
Digital /Analog Convertor.
i N” <
13 R Output The terminals f.or output .of RGB F DE
14 G Out ut primary color signals. Horizontal and 13 -
p vertical blanking signals are mixed 14(C)- 200Q Ji-
15 B Output with RGB si nals 15 <
g . ar g -JL
VCC of RGB interface part, color-
defference demodulation circuit and
16 Vcc 3 -
Digital/Analog Convertor.
Please supply 12V to this terminal.
The terminals for input of fast
17 OSD YS Input blanking signal for On Screen Display.
Threshold level is 1.4V.
The terminals for input of RGB
signals for OSD. Threshold levels are
1.4V. If Terminal 20 is connected with
VCC: it is test mode for this IC.
Threshold level of test mode is Vcc- 7:
18 OSD R Input
19 OSD G Input
20 OSD B Input
. 50#A
The terminal for input a signal to
mute the video signal when L
combining this IC with AKB IC.
21 Video Mute Threshold levels of video mute
(muting TV and Picture In Picture) C?
and TV mute (muting only TV) are
2.8V and 1.4V.
5 2001-06-25
TOSH I BA TA8884AN
Elly PIN NAME FUNCTION INTERFACE CIRCUIT
The terminal for input a signal to
reduce the contrast of TV signal
when Analog RGB signals
superimpose upon TV signal.
Threshold level is 1.4V.
Analog RGB
YM Input
The terminal for input of fast
blanking signal for Analog RGB.
Threshold level is 1.4V.
Analog RGB YS
3 Input
The terminals for input of Analog
24 Analog R Input RGB signals. These are clamped by
25 Analog G Input internal clamping circuit.
26 Analog B Input Recommendable input levels are
1.0vp_p.
Circuit
The terminal to control the contrast
27 RGB Contrast of Analog RGB signals.
The terminal for output of DAC to
28 Uni-Color adjust Uni-Color and also for input of
Automatic Contrast Limiter.
6 2001-06-25
TOSHIBA
TA8884AN
PIN NAME
FUNCTION
INTERFACE CIRCUIT
Brightness
The terminal for output of DAC to
adjust Brightness and also for input
of Automatic Brightness Limiter.
Test 2
The terminal for test of this IC. If this
terminal is connected with VCC: it is
the test mode for this IC. Please use
this IC with this terminal connected
to GND.
Y Clamp
The terminal for a filter to clamp Y
signal. It is impossible to change DC
restoration ratio by brightness control
circuit because it is compensated by
pin 42. It is fixed to 100%.
The terminal to fix time constant of
Color Limiter. Please connect
capacitor to this terminal.
I/R-Y Input
Q/B-Y Input
The terminals for input of I/R-Y and
Q/B-Y signals from digital IC.
Please input the signals through
capacitors because the signals are
clamped to standard voltage at the
inside of this IC.
TOSHIBA
TA8884AN
No PIN NAME FUNCTION INTERFACE CIRCUIT
Monitor The terminal to observe Y, R-Y, B-Y
35 Out ut and G-Y signals. The signals are (D- 5 n
p selected by " bus. 1: i
The terminal for 4MH2 Ceramics
36 4MHz Ceramics resonator to adjust internal Delay
Filter
Adjustment
The terminal for a filter to adjust
delay time of internal Delay Line. The
peak frequency of DL aperture
correction is 4.0MH2 when only
capacitor is connected. To insert
resistance between this terminal and
GND makes peak frequency lower,
between this and VCC makes it
higher.
Y Output for
The terminal for output of Y signal
to velocity modulation circuit. This Y
whitish after black expansion.
38 Vel it . . .
00 y. signal IS output after passmg black
Modulation . . . .
expanSIon and y correction circuit.
39 VCC 2 VCC of video f"'", and sharpness . -
part. Please give 12V to this terminal.
The terminal to supply control
current for Dynamic ABL and Black
D namic ABL Peak Level Correction. D. ABL and x
40 y B.P.L.C. are the functions to shift the
Input . .
level of Y signal toward black side a >
when the most black level is still T f --vn
TOSHIBA
TA8884AN
No. PIN NAME
FUNCTION
INTERFACE CIRCUIT
41 Y Input
The terminal for input of Y signal.
Recommendable input level is 1.0Vp-p
(negative Sync). Because the pedestal
level of Y signal is clamped at this
terminal, please reduce the
impedance of signal source.
42 Ratio
DC Restoration
The terminal to correct DC restoration
ratio. DC restoration ratio is fixed by
following expression.
TDc= m x30+100[%]
The smaller the external resistance R
is, the larger the amount of
correction is. With this terminal open,
you can monitor the Y signal from
which has been removed Sync signal
and which has been done black
expansion.
43 Expansion
The terminal to fix black expansion
start point. The higher voltage is
supplied, the higher the start point is.
Black Peak
44 Hold
The terminal to control the gain of
black expansion and of black level
shift for Dynamic ABL. Resistance
connected between this terminal and
GND makes black expansion change.
The smaller the resistance is, the
larger the black area is.
45 Chroma Input
The terminal for input of Chroma
signal. Recommendable input level is
50mVp-p.
TOSHIBA
TA8884AN
No PIN NAME FUNCTION INTERFACE CIRCUIT
46 GND 2 GND of video part and sharpness -
The terminal to fix the gain of ACC 7: _.n__
47 ACC DC Amp. The higher voltage is supplied g)---U2-t
(0~5V), the larger the gain is. 7:
The terminal for output of Chroma
48 Chroma Output signal which has been input to pin 45 2 on
and has passed ACC Amp. gr <3;
VCC of ACC part. Please supply 12V
clamped to the level which is fixed
by pin 52's voltage
49 VCC 1 to this terminal. -
The terminal for output of Composite
Video signal which has been input to
50 Video Output pin 53. This signal is output after
The terminal to fix clamping level for
Composite Video signal which has
level is 2Vp-p.
51 Clamp DC been input to pin 53. Please supply
O~5V to this terminal.
52 GND 1 GND of ACC part. -
The terminal for input of Composite
53 Video Input Video signal. Recommendable input
7.0V 3142
TOSH I BA TA8884AN
Pc BUS MAP (Slave Address : 88H)
SUB DATA
FUNCTION ADD. D7 D6 D5 D4 D3 D2 D1 D0
Uni-color 00 Video
(TV) Mute (0) (1) (1) (1) (1) (1) (1) (1)
Brightness 01
(TV) (1) (0) (0) (0) (0) (0) (0) (0)
Color (TV) 02 Mute (o) (1) (0) (0) (0) (0) (0) (o)
Tint (TV) 03 (1) (0) (0) (0) (0) (0) (O) (0)
Sharpness $312;
(TV) 04 ratutPe
Mode (1) (1) (0) (0) (0) (0) (0) (0)
RGB 05 Brightness
Brightness Link (0) (1) (0) (0) (0) (0) (0) (0)
RGB 06 OSD Con-
Contrast trast (1) (1) (0) (0) (0) (0) (0) (0)
Sub- 07 Y Gain for VM Color Limiter Level
Contrast (1) (1) (1) (1) (1) (0) (0) (0)
R Cut off 08 (1) (0) (0) (0) (0) (0) (O) (0)
G Cut off 09 (1) (0) (0) (0) (0) (0) (O) (0)
B Cut off 0A (1) (0) (0) (0) (0) (0) (0) (0)
G Drive OB Tempe-
rature (0) (1) (0) (0) (0) (0) (0) (0)
B Drive oc Blue Back
(0) (1) (0) (0) (0) (0) (0) (0)
Color- y Color R-Y Phase P/N Flesh Tone Flesh Tone Color Detail DAC1
Difference 0D Correction Change ON/OFF PuII-in Emphasis
Control (1) (0) (0) (0) Range (1) (0) (0) (0)
. Service High-Bright Color Sharpness Tracking DAC2 WPS Peak ACL
Video OE ON/OFF
Control 1 (0) (0) (0) (1) (0) (o) (o) (o)
. DAC3 Black Y-NR Level y Correction Point Monitor Output
Video .
Control 2 OF Expansion
(0) (0) (1) (1) (1) (1) (0) (0)
(0), (1) : Preset
11 2001-06-25
TOSH I BA TA8884AN
CONTENTS OF BUS CONTROL
ITEM SUBSTANCE (MIN.--MAX.) FEE”
Uni-color (TV) -18dB--0dB (7bit) OdB
Brightness (Including Sub) - 1.3V~+ 1.3V 10mV/STEP (8bit) 0V
Tint (Including Sub) -51.2''--+508' 0.4°/STEP (8bit) 0°
Color -14dB-- +4dB (7bit) OdB
. . 0 : OFF Bri htness of RGB is fixed b data of RGB Bri htness.
Brightness Link 1 :ON EBrightness of RGB is linked Xvith Brightness ongV.) ) OFF
RGB Contrast -18tiB--0dB (Same characteristic as Uni-Color) (7bit) -5dit
Sub Contrast (TV) -2dB-- +2dB 0.25dB/STEP (4bit) OdB
. Correction level of S.R.T when Sharpness is center
Sharpness Tracking oo: -OD /01 : -3dB/10:0dB/11: +3dB OdB
Sharpness -6dB-- +12dB (at 2.4MHz) (7bit) +6dB
RGB Brightness (Including Sub) -0.9V-r0.9V (7bit) 0V
Primary Color Output Cut Off -0.3V-- +0.7V (Compared with 3V) 4mV/STEP (8bit) +0.2V
Primary Color Output Drive The standard is R. -3dir- +3dB (7bit) center
OSD Contrast 0 : 2.0Vp-p/1 : 2.5Vp-p 2.5Vp-p
Blue Back ON/OFF 0 : OFF/1 : 1.2Vp-p OFF
High-Bright Color 00 : OFF/01 : 0.04/10 : 0.08/11 : 0.12 times OFF
Flesh Tone ON/OFF 0 : OFF/1 :ON Drawing to I axis (123°) OFF
Flesh Tone Pull-in Range 0: i34°/1 : 118° (Compared with I axis) i18°
Color Limiter Level 00: +1dB/O1:0dB/10: -1dB/11:OFF OFF
Color Temperature Mode 0 : ON At all modes, color temperature mode change is on.
Change 1 :OFF At normal TV mode, color temperature mode change OFF
IS on.
Y OUtpuT Gain For Velocity 00: -oo /01 '. -6dB/10: -3dB/11:0dB OdB
Modulation
Service 0 : OFF Normal mode OFF
1 : ON RGB output voltage becomes to cut off voltage
Y-NR Level 00:75 IRE (Y-NR Level is 0.) /O1 :50 IRE/10 : 25 IRE/11:OFF OFF
y Correction Start Point 00:70 IRE/OI :80 IRE/ 10 : 90 IRE/ll :OFF OFF
Peak ACL ON/OFF 0 : OFF/1 :ON OFF
White Peak Slice Level 0:95 IRE/l : 105 IRE (The standard is cut off voltage) 95 IRE
DAC Output 1 0 : OPEN/1 :ON OPEN
Color Detail Emphasis 00 : OFF/01 : +3dB/10: +6dB/11 : +9dB (max gain) at R-Y OFF
R-Y Phase 0 : 95°/1 :90° 95°
Black Expansion Max. Gain 0: +3dB/1 :OFF +3dB
PAL/NTSC Change 0 : NTSC/1 :PAL NTSC
DAC Output 2 0 : OPEN/1 :ON OPEN
DAC Output 3 0 : OPEN/1 :ON OPEN
Color y Correction Positive side of R-Y is corrected. 0 : ON/1 :OFF OFF
Video Mute 0 : OFF/1 :ON OFF
12 2001-06-25
TOSH I BA TA8884AN
ITEM SUBSTANCE (MIN.--MAX.) FADELT
Color Mute 0 : OFF/1 :ON OFF
Color Temperature 0 : OFF/1 :ON (G : -ldB, B : -2dB) OFF
Monitor Output Selection among 00 : G-Y/O1 : R-Y/ 10 : B-Y/11 :Y G-Y
" BUS CONTROLLED FORMAT SUMMARY
Bus controlled format of TA8884AN is based on IZC Bus control format of Philips.
Data transfer format
I S l Slave address l 0 I A l Sub address l A l Data l A l P I
I 7bit I 8bit I 8bit
MSB MSB MSB
S : Start condition
P : Stop condition
A : Acknowledge
(1) Start and stop condition (2) Bit transfer
r---, r---,
I I I I
I I I l
SCL N / N (i P SCL
- - L____I
Start condition Stop condition I /
SDA cannot change.
SDA can change.
(3) Acknowledge (4) Slave address
From Master -- Hi hi d A6 A5 A4 A3 A2 A1 A0 R/W
SDA N l - - x 7 lg Impe ence
_,_,___ 1 0 0 0 1 0 0 0
From Slave High impedance N /
isf"""""t m CA P ha fToSHlBAl2Ccom nent
From Master 1 8 9 urc se O o po e S
conveys a license under the Philips "
Patent Rights to use these components
in an PC system, provided that the
system conforms to the " Standard
Specification as defined by Philips.
[___ _—__ _____ 1
L___ ____ __ ___J
13 2001-06-25
TOSHIBA
MAXIMUM RATINGS
CHARACTERISTIC SYMBOL RATING UNIT
Power Supply Voltage VCC 14.5 V
Input Signal Voltage ein 5.0 Vp-p
Power Dissipation PD (Note) 1920 mW
Operating Temperature Topr - 20--65 ''C
Storage Temperature Tstg - 55--150 "C
TA8884AN
(Note) When using the device at above Ta =25°C, decrease the power dissipation by 15.4mW
for each increase of 1°C.
RECOMMENDABLE POWER SUPPLY VOLTAGE
PIN No. PIN NAME MIN. TYP. MAX. UNIT
16, 39, 49 12V Vcc 11.0 12.0 13.0 v
6 2.2V Vcc 2.0 2.2 2.4 v
TOSH I BA TA8884AN
ELECTRICAL CHARACTERISTICS
DC CHARACTERISTICS (Unless otherwise specified, Vcc=12V, PL Vcc=2.2V, Ta=25°C)
DC voltage characteristics
Kl"? PIN NAME SYMBOL MIN. TYP. MAX. UNIT
1 DAC Output 1 V1 11.5 11.9 12.0 V
2 DAC Output 2 V2 11.5 11.9 12.0 V
3 DAC Output 3 V3 11.5 11.9 12.0 V
4 Test 1 V4 6.15 6.65 7.15 V
5 B-Y Clamp V5 6 7 8 V
6 PL Vcc 1/6 - 2.2 - v
7 SCP Input V7 4.3 4.6 4.9 V
8 BLK Input V8 - 0 - V
9 IZL GND V9 - 0 - V
10 SDA v10 - o - v
11 SCL VII - o - v
12 GND 3 v12 - o - v
13 R Output V13 3.1 3.3 3.5 V
14 G Output V14 3.1 3.3 3.5 V
15 B Output V15 3.1 3.3 3.5 V
16 Vcc 3 v15 - 12 - v
17 OSD YS Input v17 - o - v
18 OSD R Input V18 - 0 - V
19 OSD G Input V19 - 0 - V
20 OSD B Input v20 - o - v
21 Video Mute V21 - 0 - V
22 Analog RGB YM Input V22 - 0 - V
23 Analog RGB YS Input V23 - 0 - V
24 Analog RGB R Input V24 3.7 4.0 4.3 V
25 Analog RGB G Input V25 3.7 4.0 4.3 V
26 Analog RGB B Input V26 3.7 4.0 4.3 V
27 RGB Contrast V27 3.45 3.65 3.85 V
28 Uni-Color V28 3.45 3.65 3.85 V
29 Brightness V29 4.3 4.5 4.7 V
30 Test 2 v30 0.0 0.8 1.5 v
31 Y Clamp v31 6.5 7.5 8.5 v
32 Color V32 3.45 3.65 3.85 V
33 I/R-Y Input V33 5.9 6.1 6.3 V
34 Q/B-Y Input v34 5.9 6.1 6.3 v
35 Monitor Output V35 4.5 4.7 4.9 V
36 4MHz Ceramics V36 11.5 11.8 12.0 V
37 Filter Adjustment V37 5.2 6.0 6.8 V
15 2001-06-25
TOSHIBA TA8884AN
l') PIN NAME SYMBOL MIN. TYP. MAX. UNIT
38 Y Output For VM v38 3.0 3.5 4.0 v
39 VCC 2 V39 - 12 - V
40 Dynamic ABL Input V40 2.1 2.6 3.1 V
41 Y Input v41 4.3 4.5 4.7 v
42 DC Restoration V42 4.1 4.3 4.5 V
43 Black Expansion Point V43 4.1 4.3 4.5 V
44 Black Peak Hold V44 3.7 4.5 5.3 V
45 Chroma Input V45 2.3 2.6 2.9 V
46 GND 2 V46 - 0 - V
47 ACC DC v47 - 0 - v
48 Chroma Output V48 4.05 4.20 4.35 V
49 VCC 1 V49 - 12 V
50 Video Output V50 2.1 2.3 2.5 V
51 Clamp DC V51 - 0 - V
52 GND 1 v52 - 0 - v
53 Video Input v53 6.15 6.35 6.55 v
54 R-Y Clamp V54 6 7 8 V
DC current characteristics
Kg PIN NAME SYMBOL MIN. TYP. MAX. UNIT
49 VCC 1 ICC 1 4.02 4.82 6.03 mA
39 VCC 2 ICC 2 24.40 29.28 36.60 mA
16 vcc 3 ICC 3 40.03 48.03 60.04 mA
6 IZL VCC IZL ICC 7.19 8.63 10.78 mA
16 2001-06-25
TOSHIBA TA8884AN
AC CHARACTERISTICS (Unless otherwise specified, Vcc=12V, PL Vcc=2.2V, Ta=25°C)
Video stage
CHARACTERISTIC SYMBOL CIR- TEST CONDITION MIN. TYP. MAX. UNIT
Video Gain GV50 - (Note 1) 0.95 1.00 1.05 -
Video Frequency Characteristics Gf50 - (Note 2) - -1 -3 dB
DR 5.6 6.2 - V -
Dynamic Range Of Video Input ie, p p
v50 - (Note 3) 7.0 7.4 -
And Output MIN V
V50 - 0.1 0.5
DR51 3.8 4.0 4.2 l/p-p
. . . V51CNT 2.35 2.40 2.55
- Note 4
Video Clamp Characteristics VCLMAX ( ) 4.4 4.6 4.8 V
VCLM'N 2.1 2.3 2.5
Drive Current Of Video Output I50 - (Note 5) 1.2 1.5 1.8 mA
Drive Current Of Chroma Output I43 - (Note 6) 0.7 1.0 1.3 mA
Gv48MAX 24 27 30
ACC Characteristics GV48CNT - (Note 7) 10.5 12.5 15.0 -
Gv43M'N 0.5 0.6 0.7
D R f h I
2,rla'ilctp"uatn'" O C roma nput v48MAX - (Note 8) 5.4 5.6 5.8 v
V48M'N 2.6 2.8 3.0
P I I V I F Y
edesta C amp o tage or v41 - (Note 9) 4.3 4.5 4.7 v
Phase Of Pedestal Clamp Pulse TCL1 - (Note 10) - 0.0 1.0 #5
For Y Input TCL2 2.0 2.2 2.4
Gain Of DC Restoration Ratio
Amplifier AV42 - (Note 11) 0.28 0.34 0.40 -
Max. Sensitivity Of Dynamic ABL GV40 - (Note 12) 3.5 5.0 6.5 mV/PA
Max. Gain Of Black Expansion
Amplifier GVBE - (Note 13) 1.3 1.4 1.5 -
Dynamic Range Of Y Input DR41 - (Note 14) 0.9 1.0 1.2 Vp-p
Peak Frequency Of Sharpness Fp - (Note 15) 3.7 4.0 4.3 MHz
Control
Variable Range Of Peak Fp - (Note 16) 4.3 5.9 7.8 MHz
Frequency FipmN 1.8 2.7 3.6
GSMAX IO 12 14
- N t 17 dB
Sharpness Control Range GSM'N ( o e ) -13 -ll -9
Sharpness Control Characteristics
At Center GSCT - (Note 18) 4.0 5.5 7.0 dB
17 2001-06-25
TOSH I BA TA8884AN
CHARACTERISTIC SYMBOL CIR- TEST CONDITION MIN. TYP. MAX. UNIT
P0500 160 170 180
2T Pulse Response For Super P0501 - (Note 19) 140 150 160 ns
Real Transient P0510 110 120 130
P0511 90 100 110
GNROO -13.0 -11.0 -8.5
Noise Reduction GNR01 - (Note 20) -6 -4 -2 dB
GNR10 5 7 9
. . VSTI 250 310 370
- N te 21 mV -
Black Expansion Point VST2 ( o ) 340 430 520 p p
Voltage For Black Peak
Detection ON VBPON - (Note 22) 1.2 1.5 1.8 V
Black Peak Detection Level VBp - (Note 23) - 15 i0 15 mV
GVMOO - -40 -20
Gain Of-Y Output For Velocity GVM01 - (Note 24) -7 -6 -5 dB
Modulation GVM1O -4 -3 -2
GVM11 -1 0 1
VyOO 530 575 620
y Correction Point Vy01 - (Note 25) 600 645 690 mV
V710 620 665 710
y Correction Gain Gy - (Note 26) -2.7 -2.0 - 1.3 dB
Limiting Range Of Delay Line
Aparature Correction VAL - (Note 27) 20 45 70 mVp-p
GCDOO - 1.0 +1.0 + 3.0
. . GCDo1 9 11 13
- Note 28 dB
Color Detail Emphasis GCD10 ( ) 16 18 20
GCD11 18 20 22
Voltage For HP Pulse ON VHPON - (Note 29) 4.4 4.7 5.0 V
Voltage For Clamp Voltage ON VCLON - (Note 30) 3.2 3.5 3.8 V
FSC Oscillating Frequency fFSC - (Note 31) 3.85 4.00 4.15 MHz
18 2001-06-25
TOSHIBA TA8884AN
Chroma stage
CHARACTERISTIC SYMBOL CIR- TEST CONDITION MIN. TYP. MAX. UNIT
Clamp Voltage For Color V33 - (Note 32) 5.9 6.1 6.3 V
Difference Input V34 5.9 6.1 6.3
VuRYMAX 1.16 1.38 1.64
VuRYCNT 0.67 0.80 0.95 Vp-p
VuRYM'N 0.17 0.20 0.24
Control Characteristics Of Color VuRY - (Note 33) 16.5 17.5 18.5 dB
Difference Contrast VuBYMAX 1.45 1.72 2.04
VuBYCNT 0.84 1.00 1.19 Vp-p
VuBYM'N 0.21 0.25 0.30
AVuBY 16.5 17.5 18.5 dB
. . AVUCYMAX 1.0 2.0 3.0
D1fferenc8 f?' Color Difference AVuCYCNT - (Note 34) 1.0 2.0 3.0 dB
Characteristics Among Axes
AVUCYM'N 1.0 2.0 3.0
chYMAX 1.83 2.18 2.56
chYCNT 1.16 1.38 1.64 l/p-p
chyM'N 0.23 0.27 0.32
AVCRy+ 3 4 5 dB
. . AVCRY- -15 -14 -13
- N te 35
Color Control Characteristics VCBYMAX ( o ) 2.29 2.72 3.23
chYCNT 1.45 1.72 2.04 l/p-p
chYM'N 0.29 0.34 0.40
AVCBy+ 3 4 5 dB
AVCBy- -15 -14 -13
. AVCCYMAX 1.0 2.0 3.0
Difference Of Color cm
Characteristics Among Axes AVCCY - (Note 36) 1.0 2.0 3.0 dB
AVCCYM'N 1.0 2.0 3.0
Variable Range Of Color V32 (+) - (Note 37) 0.57 0.63 0.69 V
Terminal's Voltage V32 (-) 0.57 0.63 0.69
(9R95 90 95 100
R-Y Relative Phase And ©
Amplitude (NTSC) f) 90 ( ote 38) 85 90 95
VRNTSC / VB 0.72 0.80 0.88 -
R-Y Relative Phase And QRPAL - (Note 39) 85 90 95 C)
Amplitude (PAL) VRpAL/VB 0.50 0.56 0.62 -
G-Y Relative Phase And 8GNTSC - (Note 40) 235 240 245 C)
Amplitude (NTSC) VGNTSC/VB 0.29 0.32 0.35 -
G-Y Relative Phase And 19GpAL - (Note 41) 231 236 241 C)
Amplitude (PAL) VGpAL/VB 0.32 0.36 0.40 -
19 2001-06-25
TOSH I BA TA8884AN
CHARACTERISTIC SYMBOL CIR- TEST CONDITION MIN. TYP. MAX. UNIT
Half Tylt Characteristics Of GHTRY - (Note 42) 0.47 0.50 0.53 -
Color Difference GHTBY 0.47 0.50 0.53
. VRY 4.5 4.7 4.9
gEtVSLtage Of Color Difference VGY - (Note 43) 4.5 4.7 4.9 V
p I/BY 4.5 4.7 4.9
V 0.0 0.2 0.5 V0-
. . y - Note 44 p
Color y Characteristics Ay ( ) 0.51 0.64 0.77 -
CLToo 1.1 1.4 1.7
. . . . CLT01 1.5 1.8 2.1
- N te 45 V -
Color Limiter Characteristics CLT10 ( o ) 1.8 2.1 2.4 p p
CLT11 3.8 4.0 4.2
HBCoo - 0.00 0.02
. . . HBC01 0.01 0.02 0.04
- - Note 46 -
Gain Of High Bright Color HBC10 ( ) 0.07 0.09 0.11
HBC11 0.10 0.12 0.14
HTRMAX 34 40 46
Tint Control Characteristics Of I9TBMAX 34 40 46 o
. - (Note 47)
Color Difference 6TRMIN -46 -40 - 34
6TBM'N - 46 - 40 - 34
. . Fa18 0.46 0.58 0.70
- Note 48 -
Flesh Color Characteristics F0133 ( ) 0.38 0.48 0.58
Color Mute CMUTE - (Note 49) - - - -
v10 11.5 12.0 -
. . - N t 50 V
DAC1 Characteristics V11 ( o e ) - 0.2 0.5
v20 - 11.5 12.0 -
. . Note 51 V
DAC2 Characteristics V21 - ( ) - 0.2 0.5
v30 - 11.5 12.0 -
. . Note 52 V
DAC3 Characteristics V31 - ( ) - 0.2 0.5
Dynamic Range Of Color DRR-Y - (Note 53) 1.0 1.2 - Vp-p
Difference Input DRB-Y - 1.0 1.2 -
20 2001-06-25
TOSHIBA TA8884AN
Text stage
CHARACTERISTIC SYMBOL CIR- TEST CONDITION MIN. TYP. MAX. UNIT
GR 3.7 4.2 4.8
AC Characteristics GG - (Note 54) 3.7 4.2 4.8 -
GB 3.7 4.2 4.8
GfR -5.0 -2.5 0
Frequency Characteristics GfG - (Note 55) -5.0 -2.5 0 dB
G1"; -5.0 -2.5 o
1/uMAX 1.11 1.26 1.41
Control Characteristics Of Uni- VuCNT - (Note 56) 0.64 0.73 0.82 l/p-p
Color VuMIN 0.16 0.18 0.20
AVu 16.5 17.5 18.5 dB
Pttb/tyyyf Of Uni-Color V23(+) - (Note 57) 0.59 0.65 0.71 V
Terminal s Voltage 1/28(-) 0.59 0.65 0.71
Control Characteristics Of VbrMAX 5.8 6.0 6.2
. VbrCNT - (Note 58) 4.5 4.7 4.9 V
Brightness
vbrM'N 3.2 3.4 3.6
Brightness Data Sensitivity Gbr - (Note 59) 9.2 10.2 11.2 mV
Pria.ble Range Of Brightness V29 (+) - (Note 60) 1.30 1.45 1.60 V
Termmal’s Voltage V29 (-) 1.30 1.45 1.60
VU/PSI R 5.9 6.1 6.3
VWPS1 G 5.9 6.1 6.3
White Peak Slice Level xa::; [' - (Note 61) :2 'tl (e, V
VWPSZ G 6.2 6.4 6.6
VWPS2 B 6.2 6.4 6.6
VBPS R 2.6 2.8 3.0
Black Peak Slice Level VBps G - (Note 62) 2.6 2.8 3.0 V
VBPS B 2.6 2.8 3.0
TDC R - 0 50
DC Restoration TDC G - (Note 63) - 0 50 mV
TDC B - 0 50
. . IR 1.5 2.0 2.5
g?';:; 2fg1"t" Drive Current IG - (Note 64) 1.5 2.0 2.5 mA
IB 1.5 2.0 2.5
Half Tone Characteristics GHT - (Note 65) 0.47 0.50 0.53 -
Voltage For Half Tone ON VHT - (Note 66) 1.2 1.5 1.8 V
o t t L IOf v rti I VVR 0.3 0.8 1.3
Blgnpklijng epvjse e 'ca VVG - (Note 67) 0.3 0.8 1.3 v
VVB 0.3 0.8 1.3
21 2001-06-25
TOSH I BA TA8884AN
CHARACTERISTIC SYMBOL Aff TEST CONDITION MIN. TYP. MAX. UNIT
Outp0t Level Of Horizontal ")t - (Note 68) fe 8-: 'd V
Blanking Pulse
VHB 0.3 0.8 1.3
Delay Time Of Blanking Pulse :38: - (Note 69) I bl' 3:: ps
Variable Range Of Sub-Contrast 3x23 E3 - (Note 70) _;: _:g A2, dB
VR 3.1 3.3 3.5
RGB Output Voltage VG - (Note 71) 3.1 3.3 3.5 V
VB 3.1 3 3 3 5
CUTR(+) 0.49 0.54 0.59
CUTG(+) 0.49 0.54 0.59
Variable Range Of Cut Off CUTB(+) - (Note 72) 0.49 0.54 0.59 V
Voltage CUTR(-) -0.59 -0.54 -0.49
CUTG(-) -0.59 -O.54 -0.49
CUTB(-) -0.59 -0.54 -0.49
DRG(+) 2.7 3.2 3.7
Variable Range Of Drive Control EESEI; - (Note 73) _:g -li' _:.3 dB
DRB(-) -4.0 -3.5 -3.0
MURD 2.5 2.7 2.9
MUGD 2.5 2.7 2.9
MUBD 2.5 2.7 2.9
Output Voltage At Mute Mode MURA - (Note 74) 2.5 2.7 2.9 V
MUGA 2.5 2.7 2.9
MUBA 2.5 2.7 2.9
VMU1R 2.4 2.7 3.0
Voltage For Mute ON (1) VMUIG - (Note 75) 2.4 2.7 3.0 v
VMU1B 2.4 2.7 3.0
VMU2R 1.2 1.5 1.8
Voltage For Mute ON (2) VMUZG - (Note 76) 1.2 1.5 1.8 V
VMUZB 1.2 1.5 1.8
BBR 2.5 2.7 2.9
tel" Voltage At Blue Back BBG - (Note 77) 2.5 2.7 2.9 v
BBB 4.2 4.4 4.6
VR SER 3.1 3.3 3.5
Output Voltage At Service Mode VG SER - (Note 78) 3.1 3.3 3.5 V
VB SER 3.1 3.3 3.5
Peak ACL Level VACL - (Note 79) 2.8 3.0 3.2 V
22 2001-06-25
TOSHIBA TA8884AN
CHARACTERISTIC SYMBOL CIR- TEST CONDITION MIN. TYP. MAX. UNIT
VCT1 G -1.5 -1.0 -0.5
VCT1 B -2.5 -2.0 -1.5
VCT2 G -1.5 -1.0 -0.5
VCT2 B -2.5 -2.0 - 1.5
- N te 80 dB
Color Temperature Change VCT3 G ( o ) -0.1 0.0 0.1
VCT3 B -0.1 0.0 0.1
VCT4 G - 1.5 - 1.0 -0.5
VCT4 B -2.5 -2.0 - 1.5
GTX R 4.5 5.1 5.7
Gain Of Analog RGB GTX G - (Note 81) 4.5 5.1 5.7 -
GTX B 4.5 5.1 5.7
. . GfTX R -4 -2 0
Frequency Characteristics Of
Analog RGB Gfo G - (Note 82) -4 -2 0 dB
Gfo B -4 -2 0
. DRR 1.0 1.5 -
aynuatmlc Range Of Analog RGB DRG - (Note 83) 1.0 1.5 - l/p-p
p DRB 1.0 1.5 -
v TX 6.8 7.0 7.2
White Peak Slice Level Of WPS RTX
Analog RGB VWPS G - (Note 84) 6.8 7.0 7.2 V
VWPS BTX 6.8 7.0 7.2
. VBPS R 2.2 2.4 2.6
Ir) Peak Slice Level Of Analog VBPS G - (Note 85) 2.2 2.4 2.6 V
VBPS B 2.2 2.4 2.6
Variable Range Of RGB Contrast V27(+) - (Note 86) 0.59 0.65 0.71 V
Terminal's Voltage 1/27(-) 0.59 0.65 0.71
vbrTx1MAX 4.4 4.5 4.8
VbrTx1CNT 3.5 3.7 3.9
. . MIN
Control ftyrttrittics Of VbrTX1 - (Note 87) 2.6 2.8 3.0 V
Analog RGB Brightness 1/brTX2MAx 5.8 6.0 6.2
VbrTXZCNT 4.5 4.7 4.9
VbrTXZMIN 3.2 3.4 3.6
Data Sensitivity Of Analog RGB GbrTX1 - (Note 88) 12.7 14.1 15.5 mV
Brightness GbrTX2 9.2 10.2 11.2
TOSHIBA TA8884AN
CHARACTERISTIC SYMBOL TCEIET TEST CONDITION MIN. TYP. MAX. UNIT
VUTX RMAX 1.36 1.53 1.72
VuTX GMAX 1.36 1.53 1.72
VUTX BMAX 1.36 1.53 1.72
VuTX RCNT 0.76 0.85 0.95
VuTX GCNT 0.76 0.85 0.95 Vp-p
Control Characteristics Of RGB VUTX BCNT - (Note 89) 0.76 0.85 0.95
Contrast VuTx RMIN 0.20 0.22 0.25
VuTX G'V”N 0.20 0.22 0.25
VuTX BMIN 0.20 0.22 0.25
AVuTX R 15.8 16.8 17.8
AVuTX G 15.8 16.8 17.8 dB
AVUTX B 15.8 16.8 17.8
VTX RON 1.2 1.5 1.8
\éjilltage For Analog RGB Mode VTX GON - (Note 90) 1.2 1.5 1.8 V
VTX BON 1.2 1.5 1.8
TRYS R - 20 100
TRYS G - 20 100
TRYS B - 20 100
tPRYS R - 20 100
tPRYS G - 20 100
tPRYS B - 20 100
Transmission Characteristics Of AtPRYs - (Note 91) - 0 20 ns
Analog RGB Mode rFYS R - 10 100
TFYS G - 10 100
TFYS B - 10 100
tPFYS R - 45 100
tPFYS G - 45 100
tPFYS B - 45 100
AtPFYS - 0 20
24 2001-06-25
TOSHIBA TA8884AN
CHARACTERISTIC SYMBOL CIR- TEST CONDITION MIN. TYP. MAX. UNIT
TRTX R - 30 100
rRTX G - 30 100
TRTX B - 30 100
tPRTX R - 15 100
tPRTX G - 15 100
tPRTX B - 15 100
Transmission Characteristics Of AtPRTX - 0 20
Analog RGB TFTX R - (Note 92) - 40 100 ns
TFTX G - 40 100
TFTX B - 40 100
tPFTX R - 20 100
tPFTX G - 20 100
tPFTX B - 20 100
AtPFTX - 0 20
. I/V-y/ut - - 55 - 50
2,oatt,,a,"fd1om Video To VU-OAG - (Note 93) - - 55 - 50 dB
VU-SAB - - 55 - 50
VA-ai/R - - 55 - 50
\C/irgzsjalk From Analog RGB To VA-WG - (Note 94) - - 55 -50 dB
VA-WB - - 55 - 50
VR-G - - 55 - 40
VR-B - - 55 - 40
Crosstalk Among 3 Axes Of VG-R - (Note 95) - - 55 -40 dB
Analog RGB VG-B - - 55 -40
VB-R - - 55 - 40
VB-G - - 55 - 40
VOSD i" 2.5 2.7 2.9
Output Voltage Of OSD Mode VOSD GDC - (Note 96) 2.5 2.7 2.9 V
VOSD BDC 2.5 2.7 2.9
VOSD RON 1.2 1.5 1.8
Voltage For OSD Mode ON VOSD GO” - (Note 97) 1.2 1.5 1.8 V
VOSD 30” 1.2 1.5 1.8
VOSD1 RHI 5.5 5.7 5.9
VOSD1 GHI 5.5 5.7 5.9
Output Voltage Of OSD High VOSD1 " - (Note 98) 5.5 5.7 5.9 V
Mode VOSD2 RHI 5.0 5.2 5.4
VOSDZ GHI 5.0 5.2 5.4
VOSDZ " 5.0 5.2 5.4
25 2001-06-25
TOSH I BA TA8884AN
CHARACTERISTIC SYMBOL TCEIET TEST CONDITION MIN. TYP. MAX. UNIT
VOSD RH'ON 1.2 1.5 1.8
Voltage For OSD High Mode ON VOSD GH'ON - (Note 99) 1.2 1.5 1.8 V
VOSD BH'ON 1.2 1.5 1.8
rROSD R - 15 100
TROSD G - 15 100
rROSD B - 15 100
tPRosD R - 20 100
tPROSD G - 20 100
tPRoso B - 20 100
Propagation Characteristics Of AtPROSD - (Note 100) - 0 20 ns
OSD Mode rFosp R - 35 100
TFOSD G - 35 100
z'FOSD B - 35 100
tPFosD R - 25 100
tPFOSD G - 25 100
tPFosD B - 25 100
AtPFOSDH' - 0 20
TROSD RHI - 25 100
TROSD GH' - 25 100
TROSD BHI - 25 100
tPROSD RH' - 15 100
tPROSD GHI - 15 100
tPROSD " - 15 100
Propagation Characteristics Of AtPROSDH' - (Note 101) - 0 20 ns
OSD High Mode TFOSD RHI - 35 100
TFOSD GHI - 35 100
TFOSD BH' - 35 100
tPFOSD RHI - 25 100
tPFOSD GHI - 25 100
tPFOSD " - 25 100
AtPFOSDH' - O 20
26 2001-06-25
TOSHIBA
TA8884AN
MEASUREMENT CONDITION
Video stage
Td? ITEM SW MODE (TEST cgii#ilhM..EljLt.Eh'(f,R-a =25°C)
SW45 a . .
. . SW47 a (1) Input sme wave of f=I100kHz, 0.5Vp-p to pm 53.
1 Video Gain SW51 a (2) Measure output amplitude of pm 50 and calculate AC
SW53 b gain from pm 53 to pm 50. [GVSO]
(1) Input sine wave of f=8MHz, 0.5Vp-p to pin 53.
(2) Measure output amplitude of pin 50 and calculate AC
2 Video Frequency Same as gain from pin 53 to pin 50. [GV50(8MH2)]
Characteristic above (3) Calculate frequency characteristic from GV50 and
Gvso (8MHz)-
Gfso = 20hog (GU50 (8M Hz) / GU50)
SW45 a (1) Connect external supply to
SW47 a pin 53.
3 Video In/Output SW51 a (2) Me.asere Pig!” volttge i
Dynamic Range SW53 a variation w en varying l
external supply. ______,',
- - (3) Calculate DR53, V50'V'AX and l V53
V50M'N. DR53 I
SW45 a (1) Connect external supply to V
SW47 a pin 51. 50
SW51 b (2) Measure pin 50 voltage
4 Video Clamp SW53 a variation when varying
Characteristic external voltage from 0
to 5V.
- - (3) Calculate DR51, V51CNT,
VCLMAX and VCLM'N.
SW45 a
5 Video Output Drive SW47 a Measure inflow current to pin 50 when connecting
Current SW51 a external voltage of 6V to pin 50 via 2000 resistance. [I50]
SW53 a
6 Chroma Output Drive Same as Measure inflow current to pin 48 when connecting
Current above external voltage of 6V to pin 48 via 2000 resistance. [I48]
SW45 b (1) Connect external supply to pin 47.
SW47 b (2) Input sine wave of f=3.58MHz, 50mVp-p to pin 45.
SW51 a (3) Set pin 47 voltage to 0V.
SW53 a (4) Calculate output amplitude of pin 48.
7 ACC Characteristics (5) Calculate AC gain from pin 45 to pin48. [GV48M'N]
(6) Repeat (4) and (5) when setting pin 47 voltage to 2.5V.
[GV48CNT]
(7) Repeat (4) and (5) when setting pin 47 voltage to 5V.
[GV48MAX]
27 2001-06-25
TOSHIBA
TA8884AN
Td? ITEM SW MODE (TEST cg(giililhM..EljLM=Eh'(f,R-a --25oC)
SW45 b (1) Repeat (1)--(3) of Note 7.
SW47 b (2) Measure input amplitude when pin 48 output
SW51 a waveform starts to distort while raising input
8 33:12:12; Sgugpu" SW53 a amplitude. [DR45]
(3) Set pin 47 to 5V.
- - (4) Measure max. and min. voltage whose outputs are
clipped while raising input voltage. [V48'V'AX, V43M'N]
SW20 b
SW37 OFF
9 Y Input Pedestal Clamp SW40 OFF Measure pin 41 DC voltage. [V41]
Voltage
SW41 a
SW43 OFF
SW44 b
SW30 OFF
SWy b (1) Connect 200kf1 resistance between pin 41 and VCC-
sum b (2) Observe waveforms of pin 7 and pin 42 using
SW20 b oscilloscope. Measure TCL1 and TCL2.
Y Input Pedestal Clamp SW37 OFF Lttf,TCL2
10 Pulse Phase SW40 OFF Pin42 waveform TCL1 I f:
SW41 OFF l
SW43 OFF _' - - --
SW44 b 3.7V
SW30 OFF Pin7 waveform
SW7 b (1) Set the data of sub-address (0F) to (3F).
SW8 a (2) Connect pin 42-current meter (PA meter)-externa|
supply-GND in serial. Adjust external supply so that
SW20 b
value of current meter can be 0.
DC Transmission Rate SW37 OFF (3) Observe pin 35 waveform when raising pin 42 voltage
11 Correction Amplifier SW40 OFF to the above (2) value +0.1V and +0.2V. [AV1, AVZ]
Gain SW41 a (4)N/42--uV2-zN1)/0.1 /Y gain (G : Note 54)
SW43 OFF - - Pin42 : +0.1V
SW44 b Pin 35 waveform Ll AV1 I I
AV2 Pin42 : +0.2V
SW30 OFF ___J - -
28 2001-06-25
TOSHIBA
TA8884AN
Td? ITEM SW MODE (TEST cgii#ilhM..EljLtEir2T,R-a =25°C)
SW7 b (1) Set the data of sub-address (OF) to (7C).
sum a (2) Observe pin 42 waveform when SW40 is OFF.
SW20 b (3) Observe pin 42 waveform when SW40 is a.
Dynamic ABL Max. SW37 OFF (4) Gv40 =AV / 10
12 ._. SW40 OFF/a .
Sensitivity Pin 42 waveform (OFF) I I I I
SW41 a Pin 42 waveform (a) I' II -- {AV 'l 'l
SW43 OFF I t I I
SW44 a Pin 8 waveform n_n,
SW30 OFF
SW7 b (1) Set the data of sub-address (0F) to (7C) and black
SW8 a stretching to OFF.
SW20 b (2) Input sine wave of f= 500kHz, 0.1Vp_p to pin 41.
Black Stretching SW37 OFF (3) Supply 4.5V to pin 43. .
13 Amplifier Max. Gain SW40 OFF (4) Measure pm 42 waveform amplitude. [VA]
SW41 b (5) Set the data of sub-address (OF) to (3C) and black
SW43 OFF stretching to ON.
SW44 a (6) Measure pin 42 waveform amplitude. NB]
SW30 OFF (7) GVBE=VB/VA
SW8 a (1) Connect external supply to pin 41.
SW20 b (2) Set the data of sub-address (00) to (40).
SW37 OFF (3) Set the data of sub-address (OF) to (3F).
14 Y Input Dynamic Range SW40 OFF (4) Measure voltage V41' when no voltage variation of
SW41 a pin 35 monitor output (Y output) while raising
SW43 OFF external supply voltage from V41 (Note 9).
SW44 b (5) DR41 =1/41' -V41
SW30 OFF
SW7 b (1) Connect SG to pin 41.
SW8 a (2) Input sine wave of 20mVp-p to pin 41.
SW20 b (3) Set the data of sub-address (04) to (FF).
Picture Quality Control SW37 OFF (4) Observe pin 20 waveform. . Gain
15 Peaking Frequency SW40 b (5) Measure SG frequency when pm
SW41 b 20 waveform amplitude becomes
SW43 ON maximum. [Fp]
SW44 b f
SW30 ON
29 2001-06-25
TOSHIBA
TA8884AN
Td? ITEM SW MODE (TEST cgigiililhM..EljLt-Eh'(f,R-a =25°C)
SW8 a .
SW20 b (1) Connect SG to pm 41.
SW37 a/b (2) Input sine wave of 20mVp-p to pin 41.
16 Peaking Frequency SW40 b (3) Set the data of sub-address (04) to (FF).
Variation Range (4) Measure SG frequency when pin 13 waveform
SW41 b amplitude becomes maximum (with SW37 a). [F'V'AX]
SW43 ON (5) Repeat (4) with SW37 b. [FM'N]
SW44 b
SW30 ON
SW7 b (1) Connect SG to pin 41.
sum (2) Input sme wave of 20mVp-p to pm 41.
(3) Set the data of sub-address (04) to (FF).
SW20 (4) Measure pin 35 monitor output (Y output) amplitude
SW37 OFF when input signal frequencies are 10kHz [V10K] and
Picture Quality Control 2.4MHz [VpK].
17 Range SW40 OFF (5) GMAX=20€og (VpK/V10K)
SW41 b (6) Set the data of sub-address (04) to (80).
SW43 ON (7) Measure monitor output (Y output) amplitude when
SW44 b input signal frequencies are 10kHz [V10K] and 2.4MHz
[VTP].
SW30 ON (8)GsMIN =208og (VTP/V10K)
(1) Connect SG to pin 41.
(2) Input sine wave of 20mVp-p to pin 41.
Picture Quality Control Same as (3) Set the data of sub-eddress (O4) to (C0). .
18 . . (4) Measure pm 35 monitor output (Y output) amplitude
Center Characteristic above . . .
when input signal frequencies are 10kHz [V10K] and
2.4MHz [VPK].
(5) GSCT = 208og (VPK/V10K)
SW7 b (1)Apply 2T pulse to pin 41 (0.7vp-p=100IRE)
SW8 a (2) Set the data of sub-address (0E) to (12).
SW20 a (3) Adjust sub-contrast so
that pin 35 waveform (Y
Super Real Transient 2T SW37 OFF eutput)-can be as shown
19 SW40 OFF In the right diagram
Pulse Response
SW41 b (100% = 31/p-p).
SW43 ON (4) Calculate t from pin 35 waveform. [P0510]
(5) Repeat (3) and (4) when setting the data of sub-
SW44 b address (0E) to (02), (0A) and (1A). [P0500], [P0501],
SW30 ON [P0511]
30 2001-06-25
TOSHIBA
TA8884AN
MEASUREMENT METHOD
No. ITEM SW MODE (TEST CONDITION : vcc=12v, Ta=25°C)
SW7 b (1) Connect SG to pin 41.
SW8 a (2) Input sine wave of 20mVp-p.
SW20 b (3) Set the data of sub-address (04) to (FF).
SW37 OFF (4) Set the data of sub-eddress (0F) to (OF). .
20 Noise Reduction SW40 OFF (5) M.easu.re pm 3.5 monitor output (Y output) amplitude
when input signal frequencies are 10kHz [V10K] and
SW41 b 2.4MHz [vpK].
SW43 ON (6) GNROO = 208og (VPK/ V10K)
SW44 b (7) Repeat (5) and (6) when setting the data of sub-
SW30 ON address (OF) to (1F), and (2F). [GNR011, [GNR10]
SW7 b (1) Connect external supply to pin 41.
SW8 a (2) Apply V41 (Note 9) to pin 43. Pin42 voltage
SW20 b (3) Meesnre pin 42 veltage
SW37 OFF vanaltlon rvhlle fralsmg external tf/,Txtrnisnitor,
21 Black Stretching Point 2am OFF (4)::TfuraI: 1t(rfrt2mthve41rcsult SW44: ",si,t?,itt,i'iinbl"k
(5) Repeat (3) and (4) when Pin41 voltage
SW44 a/b setting pin 43 voltage to /
SW30 OFF 1/41+0.51/. [VSTZ]
SW20 b (1) Connect external supply to pin 41 and apply 5.0V.
Black Peak Detection SW37 OFF (2) Connect external supply to pin 7 and raise voltage
22 ON Voltage SW40 a from 0V slewly. . .
SW41 a (3) Measure pm 7 applied voltage when pm 44 voltage
SW43 OFF varies. [VBPON]
SW44 C
SW30 OFF
SW20 b .
. SW37 OFF (1) Connect external supply to pm 41.
23 Black Peak Detection SW40 OFF (2) Observe pm 44.
Level (3) Measure pin 41 voltage when pin 44 goes from high
SW41 a level to low level (picture period). [V ]
SW43 OFF
SW44 c
SW30 OFF
31 2001-06-25
TOSHIBA
TA8884AN
NOTE MEASUREMENT METHOD
No. ITEM SW MODE (TEST CONDITION : vcc=12v, Ta=25°C)
SW8 a (1) Input sine wave of 0.1Vp-p, 500kHz to pin 41.
SW20 b (2) Set the data of sub-address (07) to (38).
. . SW37 OFF (3) Measure pin 38 amplitude. [VA]
24 1ttlhygltation SW40 OFF (4) GVMoo=zoeog (vA/o.1 )
p SW41 b (5) Repeat (3) and (4) when setting the data of sub-
SW43 ON address (07) to (78), (B8) and (F8). [Gi/Moll, [GVM10]:
SW44 b [GVM11]
SW30 OFF
SW7 b (1) Connect external supply to pin 41.
SW8 a (2) Set the data of sub-address (OF) to (30).
(3) Measure I/y from pin 42
SW20 b voltage variation Pin42 voltage
SW37 OFF characteristic when raising /
25 y Correction Point SW40 OFF supply voltage from V41. /
SW41 a [V700] Z
(4) Repeat (3) when setting l
SW43 OFF the data of sub-address I
SW44 b (OF) to (34) and (38). V41 V7 Pin41voltage
SW30 OFF Ny0ll, Ny10]
Considering the part in Pin42 voltage
which y correction is not
executed as OdB in Note 25,
. Same as . .
26 y Correction Curve calculate the gain of part m
above . . .
which y correction IS
executed. [Gy] OdB
Pin 41 voltage
SW20 b (1) Connect SG to pin 41.
SW OFF (2)Adjust SG frequency to Fp (Note 15).
DL Aperture Condenser 37 (3) Set the data of sub-address (04) to (FF).
27 . . . SW40 b . .
Limiting Range (4) Observe pm 35 monitor output (Y output).
SW41 b . . .
(5) Measure input amplitude when pm 35 waveform starts
SW43 ON to distort while raising input amplitude slowly. [VAL]
SW44 b
SW30 ON
32 2001-06-25
TOSHIBA
TA8884AN
MEASUREMENT METHOD
No. ITEM SW MODE (TEST CONDITION : vcc=12v, Ta=25°C)
SW7 b (1) Connect SG to pin 41.
SW8 a (2) Input white signal to TP33A, and set SW33 to b.
Adjust input amplitude so that pin 35 monitor output
SW20 b amplitude can be 3Vp-p.
SW37 OFF (3) Input sine wave of frequency : Fp, 20mVp-p to pin 41.
. . (4) Measure sine wave am litude of fre uenc F
28 Color Detail Emphasis SW40 b outputted from pin 35 ',',2f,', settingqthe détapof sub-
SW41 b address (OD) to (88), (8A) and (8E). [vCD ]
SW43 ON (5) GCD = 208og (VCD/20 )
SW44 b (6) When the data of sub-address (OD) are (88), (8A), (8C)
and (8E), each is defined as GCD00, GCD01, GCD1O
SW30 ON and GCD11, respectively.
SW20 b (1) Connect external supply to pin 41 and apply 4.0V.
SW37 OFF (2) Connect external supply to pin 8 and raise voltage
29 HP Pulse ON Voltage SW40 OFF from 0V slowly.
SW41 a (3) Measure pin 8 voltage when pin 42 voltage varies.
SW43 OFF [VHP ON]
SW44 b
SW30 OFF
SW20 b . .
SW37 OFF (1) Connect external supply to pm 7 and raise voltage
30 Clamp Voltage ON SW40 OFF from 0V slowly.
Voltage (2) Calculate pin7 voltage when pin 41 voltage becomes
SW41 a V41. [VCL ON]
SW43 OFF
SW44 b
SW30 OFF
SW20 b
. . SW37 OFF . . . .
31 FSC Oscillation SW40 OFF Calculate pm 36 oscillation frequency (4MHz ceramic).
Frequency SW41 a [fFSC]
SW43 OFF
SW44 b
SW30 OFF
33 2001-06-25
TOSHIBA
TA8884AN
Chroma stage
'IfJ.E ITEM SW MODE (TEST cllifoiilil:Rul.ElfLM=EIT2T,R-a =25oC)
32 Color Difference Input SW8 a (1) Measure pin 33 voltage. [V33]
Clamp Voltage SW33 a (2) Measure pin 34 voltage. [V34]
SW34 a
SW7 b (1) Input signal 3 of diagram 1 (f0=100kHz, picture period
sum a amplitude : Om/p-p) to pin 34.
SW33 b (2) Input signal whose phase is advanced by 90° against
SW34 b signal 3 to pin 33.
Color Difference (3) Set the data of sub-address (OF) to (3D).
33 Contrast Adjustment (4) Measure pin 35 picture period voltage when changing
Characteristic Uni-Color data (7F) : max., (40) : center and (00) :
- - min. [VuRYMAX, VuRYCNT, VuRYM'N]
(5) AVuRY = 20tog (VuRYMAX / VuRYM'N)
(6) Repeat (1)~(5) when setting the data of sub-address
(OF) to (3E). [VuBYMAX, VuBYCNT, VuBYM'N, AVugy]
Difference Between (1) AVuCYMAX=20€og (VUBYMAx/VURYMAX)
Axes Of Color Same as
34 . (2)nVucYcNT--20eog (VuBYCNT/VURYCNT)
Difference Contrast above (3) AV MIN =208 (V MIN/V MIN)
Characteristic ucy og UBY URY
(1) Input signal 3 of diagram 1 (f0=100kHz, picture period
amplitude : Om/p-p) to pin 34.
(2) Input signal whose phase is advanced by 90° against
signal 3 to pin 33.
(3) Set the data of sub-address (0F) to (3D).
Color Adjustment Same as (4) Measure pin 35 picture period voltage when changing
35 Characteristic above Uni-Color data (7F) : max., (40) : center and (00) :
min. [VCRYMAX, VCRYCNT, VCRYM'N]
(5) AVCRY ( +) = 20809 (VCRYMAX / VCRYCNT)
AVCRY ( -) = 20hog (chYM'N /chyCNT)
(6) Repeat (1)--(5) when changing the data of sub-address
(OF) to (3E). [VCBYMAX, VCBYCNT, VCBYM'N, AVCBy(+),
AVCBY(-)]
Color Characteristic Same as f1,)/,1)/,fft:1=,2n0,,ty (1,/fttC1/,1,/..fyp,C(X)
36 Between Axes above (ZMVCCY =20eog (VCBY /VCRY )
(3) AVCCYM'N = 208og (VCBYMIN /VCRYM'N)
SW7 b (1) Measure pin 32 voltage when changing color data (7F)
. . . sum a : max., (40) : center and (00) : min.
37 $2223er Variation SW33 a [V32MAX' V320)”, V32M'N]
SW34 a (2) V32 (+)=V32M“"-V32CNT
- - V32 ( -) =V32CNT_V32MIN
34 2001-06-25
TOSHIBA
TA8884AN
SW MODE
MEASUREMENT METHOD
(TEST CONDITION : VCC-- 12V, Ta =25°C)
R-Y Relative Phase And
Amplitude (NTSC)
(1) Input signal 3 of diagram 1 (fo=100kHz, picture
period amplitude : Om/p-p) to pin 34.
(2) Input signal whose phase is advanced by 90° against
signal 3 to pin 33.
(3) Measure phase difference of R-Y against B-Y when
selecting the data of sub-address (0F) to R-Y (3D) and
B-Y (3E).
(4) Calculate (3) when setting the data of sub-address (OD)
to (88) and (C8). [l?R95, 6R90]
(5) Measure picture period amplitude of signal outputted
from pin 35 when selecting the data of sub-address
(OF) to R-Y (3D) and B-Y (3E). Calculate the amplitude
ratio of R-Y against B-Y. [VRNTsc/VB]
R-Y Relative Phase And
Amplitude (PAL)
Same as
(1) Input signal 3 of diagram 1 (f0=100kHz, picture
period amplitude : 0.2Vp-p) to pin 34.
(2) Input signal whose phase is advanced by 90° against
signal 3 to pin 33.
(3) Set the data of sub-address (0D) to (A8).
(4) Measure pin 35 waveform when setting the data of
sub-address (OF) to R-Y (3D) and B-Y (3E). Calculate
the amplitude ratio of R-Y against B-Y. [BRPAL]
(5) Measure picture period amplitude of signal outputted
from pin 35 when setting the data of sub-address (OF)
to R-Y (3D) and B-Y (3E). Calculate the amplitude ratio
of R-Y against B-Y. [VRpAL/VB]
G-Y Relative Phase And
Amplitude (NTSC)
Same as
(1) Input signal 3 of diagram 1 (fo=100kHz, picture
period amplitude : Om/p-p) to pin 34.
(2) Input signal whose phase is advanced by 90° against
signal 3 to pin 33.
(3) Observe pin 35 waveform when selecting the data of
sub-address (OF) to (3C) G-Y and (3E) B-Y.
Measure the phase difference of G-Y against B-Y.
WGNTsc]
(4) Calculate picture period amplitude of signal outputted
from pin 35 when the data of sub-address (OF) is (3C)
G-Y and (3E) B-Y. Calculate the amplitude ratio of G-Y
against B-Y. [VGNTSC/VB]
35 2001-06-25
TOSHIBA
TA8884AN
MEASUREMENT METHOD
Color y Characteristic
No. ITEM SW MODE (TEST CONDITION : vcc=12v, Ta=25°C)
SW7 b (1) Input signal 3 of diagram 1 (fo=100kHz, picture
sum a period amplitude : Om/p-p) to pin 33.
SW33 b (2) Input signal whose phase is advanced by 90° against
SW34 b signal 3 to pin 33.
(3) Set the data of sub-address (0D) to (A8).
41 G-Y Relative Phase And (4) Observe pin 35 waveform by selecting the data of sub-
Amplitude (PAL) address (OF) to (3C) : G-Y and (3E) : B-Y.
(5) Calculate phase difference of G-Y against B-Y. [l?GiaAL]
- - (6) Measure picture period amplitude of signal outputted
from pin 35 when setting the data of sub-address (OF)
to (3C) : G-Y and (3E) : B-Y. Calculate the amplitude
ratio of G-Y against B-Y. [VGpAL/VB]
(1) Input signal 3 (f0=100kHz, picture period amplitude :
Om/p-p) to pin 33.
(2) Set the data of sub-address (OF) to (0D).
(3) Measure picture period amplitude of pin 35 output.
[V35ARY1
42 Color Difference Half Same as (4) Add external supply of 5V to pin 22.
Tone Characteristic above (5) Measure picture period amplitude of pin 35 output.
[V353RY]
(6) GHTRY =V35BRY/V35ARY
(7) Input signal to pin 34, and repeat (1)~(5) when setting
the data of sub-address (OF) to (OE).
(8) GHTBY = V3SBBY/ V35ABY
(1) Set the data of sub-address (02) to (C0).
43 Color Difference Same as (2) Measure each pin 35 DC voltage when setting the data
Output DC Voltage above of sub-address (OF) to OD), (OC) and (0E).
NRY, VGY, VBY]
SW7 b (1) Input signal 3 (f0=100kHz, picture period amplitude :
sum a Om/p-p) to pin 33.
SW33 b (2) Set the data of sub-address (0F) Output R-Y No-p)
SW34 a to (0D).
(3)Change picture period amplitude
of signal 3. Measure each pin 35
output signal amplitude
variation when setting the data
of sub-address (0D) to (88) : y Input I No-p)
OFF and (08) : y ON. Then,
describe the characteristic.
(4) Calculate the point at which y starts working (Vy).
Considering the inclination of straight line when yOFF
as 1, calculate the inclination of dy when yON.
36 2001-06-25
TOSHIBA
TA8884AN
Td? ITEM SW MODE (TEST cgigiililhM..EljLt.Eir2T,R-a =25°C)
SW7 b (1) Input signal 2 (picture period voltage : 0.3Vp-p) of
SW8 a diagram 1 to pin 34.
Color Limiter SW33 a (2) Set the data of sub-address (0D) to (A8).
45 Characteristic SW34 b (3) Set the data of sub-address (OF) to (OE).
(4) Measure each pin 35 output picture period amplitude
- - when setting the data of sub-address (07) to (C8), (D8),
(E8), and (F8). [CLT00, CLT01, CLT10, CLT11]
(1) Input signal 2 (picture period voltage : 0.2Vp-p) of
diagram 1 to pin 34.
(2) Set the data of sub-address (0D) to (A8).
(3) Set the data of sub-address (OF) to (OE).
(4) Adjust color control so that pin 35 output picture
. . . Same as period amplitude can be 2V - .
46 High Bright Color Gain above (5) Set the data of sub-address ?opF) to (OF).
(6) Measure each pin 35 output picture period amplitude
when setting the data of sub-address (0E) to (10), (30),
(50) and (70). N3500, V3501: V3510: V3511]
(7) HBCoo =V3500/2, HBC01=V3501/2
HBC10 =V351o/2, HBC11=V3511/2
SW7 b (1) Input signal 3 (f0=100kHz, picture period amplitude :
SW8 a 0.2Vp-p) to pin 34.
SW33 b (2) Input signal whose phase is advanced by 90° against
SW34 b signal 3 to pin 33.
RGB Color Difference (3) Set the data of sub-address (OF) to (OD).
47 Tint Control (4) Observe pin 35 output waveform.
Characteristic (5) Calculate phase variation of pin 35 output waveform
- - when setting the data of tint control (sub-address 03)
to (FF) : max. and (00) : min. [6TR'V'AX, 6TRM'N]
(6) Repeat (4) and (5) when setting the data of sub-
address (OF) to (0E). [6TB'V'AX, 6TBM'N]
(1) Input signal IQ demodulated flesh bar (rainbow signal
at spaces of 15° in the range of -30°~ +240°) to pin
34 (Q signal) and pin 33 (I signal) by ih21/p-p amplitude.
(2) Set the data of sub-address (OD) to (D8).
(3) Observe pin 35 output signal Color vector phase [''l
when selecting the data of sub-
48 Flesh Color Same as address (OF) to (3D) : R-Y and
Characteristic above (3E) : B-Y.
Graph the characteristic of color
vector phase variation.
(4) Calculate the inclination at I axis
in the graph [i18°].
(5) Repeat (3) and (4) when setting the data of sub-
address (0D) to (D0) [i33°]. Chroma input phase [°].
Input chroma phase f'']
37 2001-06-25
TOSHIBA
TA8884AN
MEASUREMENT METHOD
Dynamic Range
No. ITEM SW MODE (TEST CONDITION : vcc=12v, Ta=25°C)
SW7 b (1) Input signal 3 (f0=100kHz, picture period amplitude :
sum a 0.21/p-p) to pin 33 and 34.
SW33 b (2) Select the data of sub-address (OF) to (3D) and (3E),
49 Color Mute SW34 b and confirm that signal is outputted from pin 35.
(3) Select the data of sub-address (02) to (C0).
- - (4) Select the data of sub-address (OF) to (3D) and (3E),
and confirm that signal is not outputted from pin 35.
SW7 b (1) Set the data of sub-address (OD) to (88).
. . SW8 a (2) Measure pin1 voltage. [V1 ]
50 DACI Characteristic SW33 a (3) Set the data of sub-addresg (OD) to (89).
SW34 a (4) Measure pin1 voltage. [V11]
(1) Set the data of sub-address (0E) to (10).
. . Same as (2) Measure pin 2 voltage. [V20]
51 DAC2 Characteristic above (3) Set the data of sub-address (0E) to (14).
(4) Measure pin 2 voltage. [V21]
(1) Set the data of sub-address (OF) to (3C).
. . Same as (2) Measure pin 3 voltage. [V30]
52 DAC3 Characteristic above (3) Set the data of sub-address (OF) to (BC).
(4) Measure pin 3 voltage. [V31]
SW7 b (1) Input signal 3 (f0=100kHz, picture period amplitude :
SW8 a Om/p-p) to pin 34.
SW33 b (2) Input signal whose phase is advanced by 90° against
SW34 b signal 3 to pin 3.
Color Difference Input (3) Minimize color and Uni-Color.
53 (4) Set the data of sub-address (OF) to (0D).
(5) Measure input signal amplitude when output
waveform starts to distort while raising input signal
amplitude of pin 33 and pin 34. [DRR_y]
(6) Repeat (5) when setting the data of sub-address (OF)
to (OE). [DRB-Y]
38 2001-06-25
TOSHIBA
TA8884AN
Text stage
“£3 ITEM SWMODE msrclegii)2fuM..ElfLM=E1T2T,R-a=2soc)
SW7 b (1) Input signal 1 (f0=10kHz, picture period amplitude :
SW8 a 0.3Vp-p) to pin 41.
SW20 b (2) Measure picture period amplitude of pin 13, 14 and 15.
54 AC Gain SW24 a [V13, V14, V15]
SW25 a (3) GR=V13/0.3
SW26 a G6=V14/0.3
SW41 b GB=V15/0.3
(1) Input signal 1 (f0=8MHz, picture period amplitude :
0.3Vp-p) to pin 41.
(2) Measure picture period amplitude of pin13, 14 and 15.
. . Same as
55 Frequency Characteristic above [V13 8MHZ: V14 8MHZ: V15 8MHZ]
(3) GfR=208og (V13 8MHz/V13)
GfG =20€og (V14 8MHz/V14)
GfB=20€og (V15 8MHz/V15)
(1) Input signal 1 (f0=10kHz, picture period amplitude :
0.3Vp-p) to pin 41.
Uni-Color Adjustment Same as (2) Set the data of _sub-adtiress (OF).to (3F). .
56 Characteristic above (3) Measure each pm 35 picture period amplitude when
changing the data of Uni-Color to (7F) : max., (40) :
center and (00) : min. NUMAX, VuCNT, VuM'N]
(4) AVu = 208og (Vu'V'AX/VuM'N)
sum a (1) Measure each pin 28 voltage when changing the data
. . . . SW20 b of Uni-Color to (7F) : max., (40) : center and (00) :
57 Egg-gglor Pin Variation SW24 a min. N28MAX, V28CNT, Vng'N]
SW25 a (2) 1/28(+)=v28MAx-1/28cNT
SW26 a 1/28(-)--v28cNT-v28h/"N
SW41 a
(1) Set the data of sub-address (OF) to (3F).
58 Brightness Adjustment Same as (2) Measure each pin 35 picture period voltage when
Characteristic above changing the data of brightness to (FF) : max., (80) :
center and (00) : min. [Vbr'V'AX, VbrCNT, VbrM'N]
Calculate brightness data sensitivity from the value
59 Brightness Sensitivity Same as calculated in Note 58.
above Gbr=(VbrMAX-VbrM'N)/256
(1) Measure each pin 29 voltage when changing the data
. . . . of bri htness to (FF) : max., (80) : center and (00) :
60 Enght Pin Variation Same as min. [?lzgmx, V290“, Vng'N]
ange above
(2) V29 ( + ) = V29MAX - V29CNT
V29 ( -) = V29CNT - V29M'N
39 2001-06-25
TOSHIBA
TA8884AN
Td? ITEM SW MODE (TEST cgii#ilhM..EljLM=Eh'(f,R-a =25°C)
SW7 b (1) Maximize sub-contrast data.
SW8 a (2) Connect external supply to pin 41, and raise voltage
SW20 b from DC 4.5V slowly. Calculate voltage when each
61 White Peak Slice Level SW24 a picture period of pin 13, pin 14 and pin 15 is clipped.
SW25 a [VWPS1 R VWPS1 G, VWPS1 B]
SW25 a (3) Repeat (2) when setting the data of sub-address (0E)
SW41 a to (12). Nwps2 R, VWPSZ G, 1/wpsit B]
(1) Maximize sub-contrast data.
Same as (2) Connect external supply to pin 41, and lower voltage
62 Black Peak Slice Level above from DC 4.5V slowly. Calculate voltage when each
picture period of pin13, 14 and pin 15 is clipped.
[VBPS R, VBPS G, VBPS B]
SW7 b (1)Add stairstep signal to pin 41 from SG.
SW8 a (2) Adjust the data of Uni-Color so that pin 13 stairstep
SW20 b output signal can be 1.25Vp_p.
SW24 a (3) Measure voltage variation of A point when changing
SW25 a average luminance level (APL) of stairstep signal from
SW26 a 10% up to 90%. [TDC R]
63 DC Regeneration SW41 b (4) Repeat (2) and (3) for pin 14 and 15. [TDC G, TDC Bl
Pin 41 input signal Pin13, 14 and 15 output signal
SW8 a (1) Adjust the data of brightness so that pin 13 picture
. SW20 b period voltage can be 3.2V.
64 RGB Output Emitter SW24 a (2) Measure inflow current to pin 13 when connecting
Follower Drive Current . . .
SW25 a external supply 4.2V to pm 13 Vla 1000 resistance. [IR]
SW26 a (3) Repeat (1) and (2) for pin 14 and 15. [IG, IB]
SW41 a
SW7 b . . . .
SW8 a (1) Input signal .1 (f0=100kHz, picture period amplitude :
. . SW20 b (2) ye1ecp,)/,'i,i,1n34)ctu,e period amplitude. [V13A]
65 Half-tone Characteristic SW24 a (3) Apply external supply of 5V to pin 22.
SW25 a (4) Measure pin 13 picture period amplitude. [V133]
SW26 a (5) GHT=V13B /V13A
SW41 b
40 2001-06-25
TOSHIBA
TA8884AN
MEASUREMENT METHOD
No. ITEM SW MODE (TEST CONDITION : vcc=12v, Ta=25°C)
sum a (1) Input signal 1 (f0=100kHz, picture period amplitude :
SW20 b 0.3Vp-p) to pin 41. . .
66 Half-Tone ON Voltage SW24 a (2)Connect external supply to pm 22 and raise voltage
from 0V slowly.
SW25 a (3) Measure pin 22 voltage when pin 13 picture period
SW26 a amplitude varies. [VHT]
SW41 b
. . SW20 b . . .
67 Vertical Blanking Pulse SW24 a Calculate each voltage of pm 13, 14 and 15 while vertical
Output Level SW25 a blanking. NUR, va, VVB]
SW26 a
SW41 a
68 Horizontal Blanking Same as Calculate each voltage of pin13, 14 and 15 while
Pulse Output Level above horizontal blanking. NHR, VH5, VH3]
Calculate tdON and tdOFF from applied signal (A) to pin8
(horizontal blanking input) and output signal (B) of pin
13, pin 14 and pin 15.
69 Ilanking Pulse Delay Same as (A)lnput signal of pin 8. /r-tri -' I 1.4V
Time above (1.4Vp_p) 50%- - ------.-- -- -
(B)Output signal of pin13, "ici"" tdOFFCie
14 and 15
(1) Input signal 1 (f0=10kHz, picture period amplitude :
0.3Vp-p) to pin 41.
(2) Measure pin 13 picture period amplitude when
70 Sub-Contrast Variable Same as changing the data of sub-address (07) and sub contrast
Range above to max. (7F), center (40) and min. (00).
[VSUMAXI VSUCNTI VSUMIN]
(3) AVSU (+) = 20tog (VSUMAX/VSUCNT)
AVSU (-) = 20tog (VSUM'N/VSUCNT)
Same as Calculate each picture period amplitude of pin13, 14 and
71 RGB Output Voltage above 15. [VR, VG, VB]
(1) Set the data of sub-address (0E) to (90).
(2) Measure pin 13 picture period amplitude when
changing the data of cut-off (sub-address 08) to (FF) :
Cut Off Voltage Same as rnax., (80) : center and (00) : min. Calcylate, the
72 . difference between max. and mm. amplitudes.
Variable Range above
[CUTR(+), CUTR(-)]
(3) Repeat (2) for pin 14 when changing the data of sub-
address (09) and for pin 15 when sub-address (0A).
[CUTG(+), CUTG(-), CUTB(+), CUTB(-)l
41 2001-06-25
TOSHIBA
TA8884AN
Td? ITEM SW MODE (TEST cgii#ilhM..EljLM=Eh'(f,R-a =25°C)
SW7 b (1) Input signal 1 (f0=100kHz, picture period amplitude :
sum a 0.3Vp-p) to pin 41.
SW20 b (2) Measure pin 14 picture period amplitude when
SW24 a changing the data of drive (sub-address OB) to (7F) :
73 Drive Adjustment SW25 a max., (40) : center and (00) : min.
Variable Range SW26 a [VDRGMAX, VDRGCNT, VDRGM'N]
SW41 b (3) DRG (+)=208og (VDRGMAX/VDRGCNT)
DRG (-) = 208og (VDRGM'N /VDRGCNT)
- - (4) Repeat (2) and (3) for pin 15 when changing the data
of sub-address (0C). [DRB(+), DRB (-)]
SW7 b (Bus mode)
SW8 a (1) Set the data of sub-address (00) to (FF).
SW20 b (2) Measure picture period voltage of pin 13, 14 and
74 Output Voltage When SW24 a 15. [MURD, MUGD, MUBD]
Mute (Pin mode)
SW25 a (3) Apply external voltage of 5V to pin 21.
Slll/26 a (4) Measure picture period voltage of pin13, 14 and
SW41 a 15. [MURA, MUGA, MUBA]
(1) Set the data of sub-address (05) to (7F).
(2) Apply 5V to pin 23.
Same as (3) Connect external voltage to pin 21, and raise voltage
75 Mute ON Voltage (1) above from 0V slowly.
(4) Measure each pin 21 voltage when changing picture
period voltage of pin13, 14 and 15.
[1/MUIR, VMUIG, VMU1B]
(1) Connect external voltage to pin 21, and raise voltage
Same as from 0V slowly.
76 Mute ON Voltage (2) (2) Measure each pin 21 voltage when changing picture
above . .
period voltage of pin13, 14 and 15.
NMU2R, VMU2G, VMUZB]
Output Voltage When Same as (1) Set the data of eub-addrees (OC) to (C0). .
77 Blue Back above (2) Calculate each picture period voltage of pin13, 14 and
15. [BBR, BBG, BBB]
(1)Apply 5V to pin 21.
78 Output Voltage When Same as (2) Set the data of sub-address (0E) to (90).
Service above (3) Calculate each picture period voltage of pin13, 14 and
15. [VR SER, VG SER, VB SER]
42 2001-06-25
TOSHIBA
TA8884AN
MEASUREMENT METHOD
No. ITEM SW MODE (TEST CONDITION : vcc=12v, Ta=25°C)
SW7 b (1) Set the data of sub-address (0E) to (11).
SW8 a (2) Set the data of sub-address (02) to (7F), and set color
SW20 b to maxtmum. .
79 Peak ACL Level SW24 a (3);:pgt signal 2 to test pm 34A (TP34A), and set SW34
SW25 a (4) Raise amplitude A of signal 2 slowly.
Slll/26 a (5) Measure pin 15 picture period amplitude when pin 28
SW41 a DC voltage. (Uni-Color) changes.
SW7 b (1) Input signal 1 (f0=100kHz, picture period amplitude :
SW8 a 0.3Vp-p) to pin 41.
SW20 b (2) Measure picture period amplitude of pin 14 and 15.
SW24 a N14a, V15a]
SW25 a/b (3) Measure picture period amplitude of pin 14 and 15
SW26 a/b when setting the data of sub-address (OB) to (C0).
SW41 a/b N14aCT1, V15aCT1]
(4) VCT1G = 208og (V14aCT1/V14a)
V =20€og (V /V )
80 fo/otTemperature (5) SeCtTtIEe data of 'l1fefJd1,2's1ti) to (40) while leaving
Selection the data of sub-address (OB) to (C0).
(6) Measure picture period amplitude of pin 14 and 15.
N14atrr2, V15aCT2]
- - (7) VCTZG =208og (V14aCT2/V14a)
VCTZB = 208og (V15aCT2 /V15a)
(8) Repeat (2)--(7) when changing pin 41 (input) to both
pin 25 and pin 26 (measure), likewise.
As a result of (4) : VCT3GI VCT3B°
As a result of (7) : VCT4G, VCT4B°
SW7 b (1) Input signal 1 (f0=10kHz, picture period amplitude :
SW8 a 0.3Vp_p) to pin 41. Adjust drive adjustment data so
SW20 b that picture period amplitude of pin 14 and 15 can be
SW24 a/c equal to that of pin 13.
SW25 a/c (2) Apply external supply 5V to pin 23.
SW26 a/c (3) Input signal 1 (f0=10kHz, picture period amplitude :
81 Analog RGB Gain SW b 0.3Vp-p) to pin 24.
41 . . . .
(4) Measure pm 13 picture period amplitude. [V13R]
(5) Repeat (3) and (4) when pin 25 (input) pin 14
(measure) [V145] and pin 26 pin 15 [V153], likewise.
- - (6) GTX R =V13R/0.3
GTX G =V14G/0.3
GTX B =V153/0.3
43 2001-06-25
TOSHIBA
TA8884AN
MEASUREMENT METHOD
No. ITEM SW MODE (TEST CONDITION : vcc=12v, Ta=25°C)
SW7 b (1) Input signal 1 (f0=10kHz, picture period amplitude :
SW8 a 0.31/p-p) to pin 41. Adjust drive adjustment data so
SW20 b that picture period amplitude of pin 14 and 15 can be
SW24 a/c equal to that of pin 13.
Slll/25 a/c (2)Apply external supply of 5V to pin 23.
SW26 a/c (3) Input signal 1 (f0=8MHz, picture period amplitude :
Analog RGB Frequency 0.3V - ) to pin 24.
82 . . SW41 b p p . . .
Characteristic (4) Measure pm 13 picture amplitude. [V13R8MHz]
(5) Repeat (3) and (4) when pin 25 (input) pin 14
(measure) [V14G8MHZ] and pin 26 pin 15 [V1568MHZL
- - likewise.
(5) Gfo R=20tog (V13R8MHz/V13R)
Gfrx G =208og (V1468MHz/V14G)
Gfo B=208og (1/15B8MHz/1/15B)
SW7 b (1)Apply external voltage of 5V to pin 23.
sum a (2) Set the data of RGB contrast to (00) : min.
SW20 b (3) Input signal 2 of diagram 1 to pin 24 and raise picture
83 Analog RGB Input SW24 a period amplitude A from 0V slowly.
Dynamic Range (4) Measure picture period amplitude A when no variation
SW25 a of pin 13 picture period voltage. [DRR]
SW26 a (5) Repeat (3) & (4) when pin 25 (input) pin 14 (measure)
SW41 a [DRG] and pin 26 pin 15 [DRB], likewise.
(1) Input signal 1 (f0=10kHz, picture period amplitude :
0.31/p-p) to pin 41. Adjust drive adjustment data so
that picture period amplitude of pin 14 and 15 can be
equal to that of pin13.
. (2) Apply external supply of 5V to pin 23.
84 2aalogicReG1,1,5hite Sgrlye as (3) Set the data of RGB contrast to (7F) : max.
ove (4) Apply external voltage to pin 24 and raise voltage
from DC 4.5V slowly. Calculate voltage at which pin 13
is clipped. [prs RTX]
(5) Repeat (3) and (4) when pin 25 (input) pin 14
(measure) [DRG] and pin 26 pin 15 [DRG], likewise.
(1) Input signal 1 (f0=10kHz, picture period amplitude :
0.3Vp.p) to pin 41. Adjust drive adjustment data so
that picture period amplitude of pin 14 and 15 can be
equal to that of pin13.
(2) Apply external supply 5V from pin 23.
85 Analog RGB Black Peak Same as (3) Set the data of RGB contrast to (7F) : max.
Slice Level above
(4) Apply external voltage to pin 24 and raise voltage
from DC 4.5V slowly. Calculate voltage at which pin 13
is clipped. [VBPS R]
(5) Repeat (3) and (4) when pin 25 input pin 14 (measure)
[VBPS G] and pin 26 pin 15 [VBPS Bl, likewise.
44 2001-06-25
TOSHIBA
TA8884AN
Adjustment
Characteristic
Td? ITEM SW MODE (TEST cgigiililhM..EljLt-Eh'(f,R-a =25°C)
SW7 b (1)Apply external supply of 5V to pin 23.
sum a (2) Calculate each pin 27 voltage when changing the data
RGB Contrast Pin SW20 b of. RGB contrast to (7F) : max., (40) : center and (00) :
86 Variation Range SW24 a mm. N27MAX, V27CNT' V27MIN]
SW25 a (3) Calculate the difference of RGB contrast pin voltage.
SW26 a V27 (+)--V27MAX-1/27CNT
SW41 a V27 (-)=V27C”T-V27M'N
(1) Input signal 1 (f0=10kHz, picture period amplitude :
0.31/p-p) to pin 41. Adjust drive adjustment data so that
picture period amplitude of pin 14 and 15 can be
equal to that of pin 13.
(2)1nput signal 2 to pin 24, pin 25 and 26.
(3)Apply external supply 5V to pin 23.
(4) Adjust amplitude A of signal 2 so that picture period
amplitude of pin 13 can be 0.5Up-p.
Analog RGB Brightness Same as (5) Calculate picture period voltage of pin 13, 14 and 15
87 Adjustment when changing the data of RGB contrast to (7F) :
Characteristic above max., (40) : center and (00) : min.
[VbrTX1MAX: VbrTX1CNT: VbrTX1M'NI
(6) Set the data of sub-address (05) to (CO).
(7) Adjust amplitude A of signal 2 so that pin 13 picture
period amplitude can be 1.5Vp-p.
(8) Calculate each picture period voltage of pin13, 14 and
15 when changing the data of brightness to (FF) :
max., (80) : center and (00) : min.
NbrTX2MAX, VbrTXZCNTI VbrszM'NI
88 Analog RGB Brightness Same as (1)GbrTX1=(VbrTX1MAX‘VbrTX1M'N)/128
Sensitivity above (2) GbrTX2 = (VbrTXZMAX - VbrTXZMIN) / 256
SW7 b (1) Input signal 1 (f0=10kHz, picture period amplitude :
SW8 a 0.3Vp.p) to pin 41. Adjust the data of drive adjustment
SW20 b so that picture period amplitude of pin 14 and 15 can
SW24 a/c be equal to that of pin13.
SW25 a/c (2)Apply external supply 5V to pin 23.
SW26 a/c (3) Input signal .1 (f0=100kHz, picture period amplitude :
RGB Contrast SW41 b 0.3Vp-p) to pm 41.
(4) Calculate pin 13 picture period voltage when changing
the data of RGB contrast to (FF) : max., (40) : center
and (00) : min. [VuTX RMAX, VuTX RCNT, VuTX RM'N]
(5)AVuTX R=20€og (VuTX RMAX/VuTX RMIN)
(6) Repeat (3) to (5) when pin 25 (input) pin 14 (measure),
[VUTX GMAX, VuTX GCNT: VuTX GM'N: AVUTX G]
and pin 26 (input) pin 15 (measure). likewise.
[VUTX BMAX, VUTX f", VUTX BMIN, AVUTX B]
45 2001-06-25
TOSHIBA
TA8884AN
Td? ITEM SWMODE o-EsrcgigiililhM..EljLM=E1T2T,R-a=2soc)
SW7 b (1) Input signal 1 (f0=10kHz, picture period amplitude :
SW8 a Om/p-p) to pin 41.
SW20 b (2) Connect external supply to pin 23 and raise voltage
90 Analog RGB Mode ON SW2 c from 0V slowly.
Voltage 4 (3) Measure pin 23 voltage when signal 1 is outputted to
SW25 a pin 13. [VTX RON]
SW26 a (4) Repeat (1) to (3) when pin 25 (input) pin 14 (measure)
SW41 a [VTX Gon and pm 26 pm 15 [VTX BON], likewise.
SW7 b (1) Set the data of RGB brightness to (7F) : max.
(2) Input signal 4 (signal amplitude : 3Vp-p) of diagram 2
SW8 a to pin 23.
(3) Measure change characteristic of pin 13 in accordance
SW20 b with the diagram 2.
91 Analog RGB Mode SW24 a [rRYS R, tPRYS R, TFYS R, tPFYS R].
Change Characteristic (4) Repeat (3) for pm 14 and 15, likewise.
SW25 a [TRYS G: tPRYs G: ros G, tPFYs G, ers B, tPRYs B,
TFYS B: tPFys B]
SW26 a (5) From the above measurement data, calculate max.
difference between axes of transmission delay time at
SW41 a rise and fall time.[AtPRY5, AtPFYS]
SW7 b (1)Apply external supply 5V to pin 23.
(2) Input signal 4 (signal amplitude : 0.51/p-p) to pin 23.
SW8 a (3) Measure change characteristic of pin 13 in accordance
SW20 b \[Nith the diagram 2. ]
TR ' tPR ' TF ' tPF
92 Analog RGB, Change SW24 a/c (4) ReJétRB) foTrXpFizn14Tz):n§ 15. TX R
Characteristic
SW25 a / C [rRTx G, tPRTX G, TFTX G, tPFTX G, TRTX B, tPRTx B,
TFTX B, tPFTX B]
SW26 ale (5) From the above measurement data, calculate max.
difference between axes of transmission delay time at
SW41 a rise and fall time. [AtPRTX, AtPFTX]
SW7 b (1) Input signal 1 (fo=4MHz, picture period amplitude :
sum a 0.71/p-p) to pin 41.
SW20 b (2) Adjust the data of sub-contrast so that picture period
SW24 a amplitude of pin 13 can be 3Yp_p.
93 Crosstalk To SW25 a l) 3422'; reextirnnt3sti'c"t?re5,1,/etrU)2t3jut amplitude
Video-s/ina' RGB SW25 a [V13A] .
SW41 b (5) Calculate crosstalk amount from video to analog RGB.
(/-YAR = - 20tog (V13A/ 3)
- - (6) Repeat (2)--(5) for pin 14 and 15.
NU-a/us, Vu-SAB]
46 2001-06-25
TOSHIBA
TA8884AN
MEASUREMENT METHOD
No. ITEM SW MODE (TEST CONDITION : vcc=12v, Ta=25°C)
SW7 b (1)Apply external supply 5V to pin 23.
SW8 a (2) Input signal 1 (f0=4MHz, picture period amplitude :
SW20 b 0.7Vp_p) to pin 41.
SW24 a/b (3) Adjust the data of RGB contrast so that picture period
SW25 a/b amplitude of pin 13 can be 3Vp-p.
94 Crosstalk To Analog SW26 a/b (4) Set the data of sub-address (04) to (CO) : max.
RGB-9Video SW41 a (5) Measure pin 13 picture period output amplitude.
[V133]
(6) Calculate crosstalk amount from analog RGB to video.
- - VA-WR-- -208og (V13B/3)
(7) Repeat (2) to (6) when pin 25 (input)-opin 14 (measure)
NA-WG] and pin 26-apin 15 NA-WB] likewise.
(1)Apply external supply 5V to pin 23.
(2) Input signal 1 (f0=1MHz, picture period amplitude :
0.5Vp-p) to pin 41.
(3) Measure picture period output amplitude of pin 13, 14
95 Analog RGB Crosstalk Same as and 15. [V13, V14, V15]
Between 3 Axes above (4) Measure crosstalk between 3 axes.
VR-ata-- -208og (V14/V13)
VR-aB = - 208og (V15 /V13)
(5) Input to pin 25 and 26, and calculate VG-OR, VG-aB,
I/B-OR, I/B-aG.
OSD Output DC SW20 a (1)Apply external supply 51/.to pin 17. .
96 Current Voltage SW24 a (2) Measure each picture period voltage of pin13, 14 and
SW25 a 15. [VOSD i", VOSD GDC, Voso i"]
SW26 a
SW41 a
(1) Connect external supply to pin 17 and raise voltage
Same as from 0V slowly.
97 OSD Mode ON Voltage above (2) Measure picture period output amplitude of pin13, 14
and 15. [VOSD RON, VOSD d", VOSD BON]
(1)Apply external supply 5V to pin17.
(2) Apply external supply 5V to pin 18.
(3) Measure pin 13 picture period voltage. Noso1 RH']
98 OSD Output High Level Same as (4) Set the data of sub-address (06) to (40).
Voltage above (5) Measure pin 13 picture period voltage. Noso2 RHI]
(6) Repeat (2)--(5) when pin 19 (input) pin 14 (measure)
[V0501 GHI, V0502 GH'] and pin 20 pin 15 [Vosm BH':
VOSDZ BH'] likewise.
47 2001-06-25
TOSHIBA
TA8884AN
SW MODE
MEASUREMENT METHOD
(TEST CONDITION : VCC-- 12V, Ta =25°C)
OSD High Level Mode
ON Voltage
mmmmmm
(1)Apply external supply 5V to pin 17.
(2) Connect external supply to pin 23 and raise voltage
from 0V slowly.
(3) Measure pin 18 voltage when pin 13 picture period
voltage changes. [VOSD RH'ON]
(4) Repeat (2) and (3) when applying voltage to pin 19 to
measure pin 14 [VOSD GHI ON] and pin 20 to pin 15
[VOSD " ON], likewise.
OSD Mode Change
Characteristic
Same as
(1) Input signal 4 (signal amplitude : 3Vp-p) to pin17.
(2) Measure change characteristic for pin 13, 14 and 15, in
accordance with the diagram 2.
[TROSD R, tPROSD R, TFOSD R, tPFOSD R:
TROSD G, tPROSD G, rFoso G, tPFOSD G,
TROSD B, tPROSD B, rFoso B, tPFOSD B]
(3) From the above measurement data, calculate max.
difference between axes of transmission delay time at
rise and fall time. [AtPR05D, AtPFOSD]
OSD High Mode
Change Characteristic
Same as
(1)Apply external supply 5V to pin17.
(2) Input signal 4 (signal amplitude : 3Vp-p) to pin 18.
(3) Measure change characteristic for pin13, 14 and 15, in
accordance with the diagram 2.
[TROSD il tPROSD RHI, rFoso il tPFOSD RH']
(4) Repeat (2) and (3) when pin 19 (input) pin 14
(measure),
[TROSD tsm, tPRoso tl, TFOSD GH', tPFoso GH'L
and pin 20 pin 14, likewise.
[TROSD BH': tPROSD BH': rFoso il tPFOSD BH']
(5) From the above measurement data, calculate max.
difference between axes of transmission delay time at
rise and fall time. [AtPR05D“', AtPFOSDH']
48 2001-06-25
TOSHIBA TA8884AN
THE SIGNALS FOR TEXT AND CHROMA STAGE MEASUREMENT
C) Video signal nj U l,,
-Sine wave (Frequency : f0)
© Input signal 1
Amplitude : A
(3 Input signal 2
Sine wave (Frequency :fo)
© Input signal 3
49 2001-06-25
TOSH I BA TA8884AN
THE PULSES FOR TEXT AND CHROMA STAGE MEASUREMENT
20pts I
20ns 20ns
(A) Input signal 4
50% -__.-___.-_- - -__.-__._.-_.- - -.-______. -
10% -.-.-.V
50% -.-.-.-.-.V
90% -__.-._____.-
100% - ._.-.-.-._
50 2001-06-25
TOSH I BA TA8884AN
TEST CIRCUIT 1
. . n Vcc
DC characteristics 12V
-_ee,-(2 DAC Output 1 C..,,,,.,,? R-Y Clamp Cigr-._ye-a
100kQ 0.01/1F
-ett,-tCi) DAC Output 2 Video Input 53 NC
100m O
--_ter,-t2 DAC Output 3 GND 1 D--
N.c@ Test 1 Clamp DC ci)-
0.01 pd'
"ic-Ci) B-Y Clamp Video Output Dru:
tcs-fi) Pr. Vcc VCC 1 fiir,
VCC C.cy I H
4.714) 0.01/1F
2.2V :"ii'if're Sand Castle Pulse Chroma Output tC(i)cc
'-MN- Input
"kn--(ii) Blanking Input ACC DC Ci7y-a-
-(i) |2L GND GND 2 Cis)--
N.C@ SDA Chroma Input Dro.c
N.C SCL Black Peak Hold D-i-
0.01/1F
-(fi) GND 3 a Black Expansion Point 43
<12 0.01/1F
N.c@ R Output 'e DC Restoration Ratio 42
N.c@ G Output w Y Input D-i--
w .01/1F
N-C@ B Output < Dynamic ABL Input D-ee-a-
31¢ F- 240142
F1 Cs) Vcc 3 Vcc 2 Ciii)
0.01 F
--Ci OSD YS Input Y Output for VM @Nc "
0.01PF
-(i? OSD R Input Filter Adjustment Ciry-GC-
-(jCii OSD G Input 4MHz Ceramics D-iiiittrp;
0.01/1F
3.3,aF
--(Ei OSD B Input Monitor Output 35 NC
-C2jD Video Mute Q/B-Y Input D--.
0.01/1F
--(ii Analog RGB YM Input l/R-Y Input Cie)---
0.01/1F
-(ii) Analog RGB Y5 Input Color DN.c
I C Ch "
r-' 24 Analog R Input Y Clamp 31 "
0.01/1F “J 0.01,;F
I-y-Iii Analog G Input Test 2 @N.C
0.01/1F
I-y-di? Analog B Input Brightness ®N_C
0.01/1F
N.C 27 RGB Contrast Uni-Color @N.C
51 2001-06-25
TOSHIBA
TA8884AN
TEST CIRCUIT 2
AC characteristics
052 5.1Y
I {OMEN E 0.1 F
. "r-h-st/kt-it,,,-,)))) DAC Output 1 L...,,,.,,? R-Y Clamp 54 IEE a
JtS 'V'm ( 51kQ TP1 51kQ Pin 54 oHi
-'iicc'-t-CI. 1L9 - 2 DAC Output 2 Video Input 53 I-ep-EI TP53A
a. 'k 51km m 51kS2 Pi 53 0.1/2F b
-(i) < 32 g In SWS?
's, "E . 51m 51m 3 DAC Output 3 GND 1 D-tini, 39m lkQ
tlL 14 TP3 I-H: i:,-EtEEr-'is'
1, [1—03 Test1 Clamp DC 51
N 13 Pin4 Pi 51 My o-CITY]
'- ti) n b
U 12 NC 5 B-Y Clamp Video Output 50 _
I D 100m 0.01,uF 0.1/2F Pin 50
<1'11 n - + IZLVCC VCC1@ + -
Ps 300
u 052 2.2YCI-o a 0-01/zF 100/IF
r- 10 Tp7 Sand Castle Pulse Chroma Output D-co Pin 48 3 9kQ 1k9,
ESW7 Pi Input .
in? .F-eti a
a 8 Blankin In ut ACC DC 47 0.01 F
TP8 D b SW8 Pin8 g p Pin 47 SW47 b D mu
E E it-(si 12L GND GND 2 46 -Jitl-t -
F 3 S n 0.01/1F a l 2km
E1 1 w. 10 SDA Chroma Input 45 F-o- t r-Ah/V-ti
4709 V sw o-iP45 Ipf
TP10 Pin45 45 b SW44 a - + .
El w. (ii, SCL Black Peak Hold 44
Tp11 4700 a Pin44 20kg c 100kQ
" bus controller it-((i) GND 3 < Black Expansion Point 13?,,ar,irst,s; 30pF
Pin 43 43 _
TP13 13 R Output V DC Restoration Ratio 42 ' a 3kQ
2142 Pin13 00 ''in42g SW41 I t
TP14 14 G Output 00 Y Input 11?,,a-,ii'it,i-P"'t-e TP41A
2kQ Pin 14 tX) Pin 41 (hlpzF a b 24ng
TP15 15 B Output Dynamic ABL Input 40 F-sr-
- it Em Pin 15 < Pin 40 SW40 b 24kg t
.riaii-iffic'-"12-i, V 3 F- VCC 2 39 _
100” O'OWF CC d 0 01/4 100,4
TP17l "2tita,,ir,f712 OSD YS Input Y Output for VM 38 . 10kQ b a 10kQ
2000 Pin17 '-'ked'rut; SW37
TP18 cttttrit,,i-,,,fii OSD R Input Filter Adjustment
Si 1 2009 Pin 18 Pin37 'st
gna A ' 0.1/2F
--6V TP19 Q 19 OSD G Input 4MHz Ceramics C3,,tr,iellz-t
L I . 200 . '
ov 2000 Pin19 Pin 36 4MHz
TP20 CI-TNC-o
a 20 OSD B Input Monitor Output 30-cl
(Note)Phase of composite 51kg b SW20 Pin 20 Pin 35 trt
signal and signal A, B. cc-Iii) Video Mute Q/B-Y Input 34 F-Hi-In TP34A
Pin21 Pin34 0"tsw3)' trt
Burst EI-l 22 Analog RGB YM Input l/R-Y Input 33 o CI
l Composite Pin 22 Pin 33 0.1,uF SW33 b
video signal TP23 .?-2igrti-n,(ii Analog RGB YS Input Color 32 + -
I Ill it-p 2?)?le Pin 23 Pin32 10pF
II Teiit-iti'2-)Faicfi? Analog R Input Y Clamp 11?,rna'r,,t
H Signal A 3? bd,)24 to Pin 24 Pin 31 001/1
3 'ull, "2cji-',v-is1ii/' 254 25 Analog G Input Test? 30 Pi 30 SW 'rt
. In 30
11 a 0.1 F Pin 25 . + -
ll . I TP26AD_° 26 Analog B Input Brightness 29
l Ill Signs B b SW26 6) Pin 26 Pin 29 IPF
27 RGB Contrast Uni-Color 28 I-t
0OIPF Pin 27 Pin 28 EODWF
52 2001 -06-25
TOSH I BA TA8884AN
APPLICATION CIRCUIT
v ska 0-01/1F Vcc
CC" 1 V..,,,,.) Cii)-ai-t
5kfl 10/1F
._w,_@ Ci3)-+i---- from AV sw
0.01 F
Cs) 51 --
to Digital VCD
0.01pF
o 01pF Ci?, 350 100prF -
052 2.2Y 0.01mE
--""-"''Ci? Ci))'""""''--- to Digital VCD
from External Circuit 0OIPF
---I 8 47
- ACC Gain
t-C9", yr-t
4700 0-1#F
---ui7v"-0j) css),-.,,,.,''--- from Y/C Separation
from Microcomputer 4700 180kQ 2.2PF
---csrc-(i1. 44 + -
51kQ 110kQ
$-(i))
.__m_@
Q T A 8 8 8 4 A N [u .
to RGB Drive Circuit ---"iiiv"-(12 D-is-- from Y/C Separation
2000 180kQ
- w. .65 C4),n-n,',',Fiir-M--- to ABL Circuit
ih01prF 100/1: -
. it-: 16 oy-EI/Eli-.
100,15 + 0-01/1F
--"-"''ft,-Ci CE)"""'''''--- to Velocity Moduration
2000 O-OI/w Circuit
.__w»_@ 37
to Character 2009 4MHz
Generator - C19 36 il
-gt-(ii) ii)
200 0.033PF
Ci 34 '---
from Chroma
(h033pF Demoduration Output
Ci) 33 l—
2009 LWE
---"i'a"-(22 D-'iet
0.1/1F 24 31 0.01/1F
to External t"
. . 0.1 F
RGB Circuit lf
.. 's2d.i) Ciir-t
0.1/1r- 1,1F
---ei-(it)) 29 + -
0.01/1F 0.01,uF
27 28 '-t
53 2001-06-25
mméoéoom ¢m
GE 9;} n 2925
N.DHmdv
I KN v
n jjjjfiJJJJJJJn—JJJJJJJJ3333]]:
30:07 I.
EEE—Lr—EE—LEEEEEE—LEEEEEEEEE—LEE
V WN Vm
EE ” :c: wm.F-oom-m-vmm_om
mzo_mzm_>:n_ mw<¥UZTOSH I BA TA8884AN
RESTRICTIONS ON PRODUCT USE
000707EBA
OTOSHIBA is continually working to improve the quality and reliability of its products.
Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent
electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer,
when utilizing TOSHIBA products, to comply with the standards of safety in making a safe
design for the entire system, and to avoid situations in which a malfunction or failure of such
TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified
operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please
keep in mind the precautions and conditions set forth in the "Handling Guide for
Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
OThe TOSHIBA products listed in this document are intended for usage in general electronics
applications (computer, personal equipment, office equipment, measuring equipment, industrial
robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor
warranted for usage in equipment that requires extraordinarily high quality and/or reliability or
a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended
Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship
instruments, transportation instruments, traffic signal instruments, combustion control
instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA
products listed in this document shall be made at the customer's own risk.
0 The products described in this document are subject to the foreign exchange and foreign trade
OThe information contained herein is presented only as a guide for the applications of our
products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of
intellectual property or other rights of the third parties which may result from its use. No
license is granted by implication or otherwise under any intellectual property or other rights of
TOSHIBA CORPORATION or others.
0 The information contained herein is subject to change without notice.
55 2001-06-25
:
www.loq.com
.
ic,good price


TEL:86-533-2716050      FAX:86-533-2716790
   

©2020 IC PHOENIX CO.,LIMITED