IC Phoenix
 
Home ›  MM4 > M28W320EBT10ZB6T,32MBIT (2MB X 16, BOOT BLOCK) 3V SUPPLY FLASH MEMORY
M28W320EBT10ZB6T Fast Delivery,Good Price
Part Number:
If you need More Quantity or Better Price,Welcom Any inquiry.
We available via phone +865332716050 Email
Partno Mfg Dc Qty AvailableDescript
M28W320EBT10ZB6TSTN/a2500avai32MBIT (2MB X 16, BOOT BLOCK) 3V SUPPLY FLASH MEMORY


M28W320EBT10ZB6T ,32MBIT (2MB X 16, BOOT BLOCK) 3V SUPPLY FLASH MEMORYAbsolute Maximum Ratings 18DC and AC PARAMETERS . 19Table 10. Operating and AC Measureme ..
M28W320ECB-70ZB6 ,32MBIT (2MB X 16, BOOT BLOCK) 3V SUPPLY FLASH MEMORYFEATURES SUMMARY■ SUPPLY VOLTAGE Figure 1. Packages–V = 2.7V to 3.6V Core Power SupplyDD–V = 1.65V ..
M28W320ECB70ZB6T ,32MBIT (2MB X 16, BOOT BLOCK) 3V SUPPLY FLASH MEMORYLogic Diagram . . 5Table 1. Signal Names . . . 5Figure 3. TSOP Connections . . . ..
M28W320ECT70ZB6 ,32MBIT (2MB X 16, BOOT BLOCK) 3V SUPPLY FLASH MEMORYAbsolute Maximum Ratings . . . . . . . 21DC and AC PARAMETERS . 22Table 13. Operating an ..
M28W320FCB70N6E , 32 Mbit (2Mb x16, Boot Block) 3V Supply Flash Memory
M28W320FCB-70N6E , 32 Mbit (2Mb x16, Boot Block) 3V Supply Flash Memory
M4N26 ,6-Pin DIP Optoisolators Transistor Output
M4N37 ,6-Pin DIP Optoisolators Transistor Output
M4T28-BR12SH ,TIMEKEEPER SNAPHAT Battery & CrystalAbsolute Maximum Ratings . 7DC and AC PARAMETERS . . 8Table 3. DC and AC Measurement Co ..
M4T28-BR12SH1 ,TIMEKEEPER SNAPHAT (BATTERY & CRYSTAL)M4T28-BR12SHM4T32-BR12SH® ®TIMEKEEPER SNAPHAT (Battery & Crystal)
M4T32-BR12SH1 ,TIMEKEEPER SNAPHAT (BATTERY & CRYSTAL)Logic Diagram Table 1. Signal NamesX1 Crystal InputX2 Crystal OutputX1 X2V Negative VoltageBAT–V Po ..
M4T32-BR12SH6 ,TIMEKEEPER SNAPHAT (BATTERY & CRYSTAL)TABLE OF CONTENTSSUMMARY DESCRIPTION... ...... ....... ...... ....... ...... ....... ...... ...... ..


M28W320EBT10ZB6T
32MBIT (2MB X 16, BOOT BLOCK) 3V SUPPLY FLASH MEMORY
1/45
PRELIMINARY DATA

October 2002
M28W320EBT
M28W320EBB

32 Mbit (2Mb x16, Boot Block)
3V Supply Flash Memory
FEATURES SUMMARY
SUPPLY VOLTAGE
–VDD = 2.7V to 3.6V Core Power Supply
–VDDQ= 1.65V to 3.6V for Input/Output
–VPP = 12V for fast Program (optional) ACCESS TIME: 70, 85, 90,100ns PROGRAMMING TIME 10μs typical Double Word Programming Option Quadruple Word Programming Option COMMON FLASH INTERFACE MEMORY BLOCKS Parameter Blocks (Top or Bottom location) Main Blocks BLOCK PROTECTION on TWO PARAMETER
BLOCKS
–WP for Block Protection AUTOMATIC STAND-BY MODE PROGRAM and ERASE SUSPEND 100,000 PROGRAM/ERASE CYCLES per
BLOCK ELECTRONIC SIGNATURE Manufacturer Code: 20h Top Device Code, M28W320EBT: 88BCh Bottom Device Code, M28W320EBB: 88BDh
Figure 1. Packages
M28W320EBT, M28W320EBB
TABLE OF CONTENTS
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Figure 3. TSOP Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Figure 4. TFBGA Connections (Top view through package). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Figure 5. Block Addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

Address Inputs (A0-A20). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Data Input/Output (DQ0-DQ15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Chip Enable (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Write Protect (WP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Reset (RP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
VDD Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
VDDQ Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
VPP Program Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
VSS Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

Read.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Automatic Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Table 2. Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

Read Memory Array command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Read Status Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Read Electronic Signature Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Table 3. Command Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Read CFI Query Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Double Word Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Clear Status Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Program/Erase Suspend Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Program/Erase Resume Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Block Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Table 4. Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Table 5. Read Electronic Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
3/45
M28W320EBT, M28W320EBB

Table 6. Memory Blocks Protection Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Table 7. Program, Erase Times and Program/Erase Endurance Cycles . . . . . . . . . . . . . . . . . . . .15
STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

Program/Erase Controller Status (Bit 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Erase Suspend Status (Bit 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Erase Status (Bit 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Program Status (Bit 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
VPP Status (Bit 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Program Suspend Status (Bit 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Block Protection Status (Bit 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Reserved (Bit 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Table 8. Status Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

Table 9. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

Table 10. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Figure 6. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Figure 7. AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Table 11. Device Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Table 12. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Figure 8. Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Table 13. Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Figure 9. Write AC Waveforms, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Table 14. Write AC Characteristics, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Figure 10. Write AC Waveforms, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Table 15. Write AC Characteristics, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Figure 11. Power-Up and Reset AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Table 16. Power-Up and Reset AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

Figure 12. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Outline . . . . . . . .27
Table 17. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Mechanical Data .27
Figure 13. TFBGA47 6.39x6.37mm - 8x6 ball array, 0.75mm pitch, Bottom View Package Outline28
Table 18. TFBGA47 6.39x6.37mm - 8x6 ball array, 0.75mm pitch, Package Mechanical Data . . .28
Figure 14. TFBGA47 Daisy Chain - Package Connections (Top view through package) . . . . . . . .29
Figure 15. TFBGA47 Daisy Chain - PCB Connections proposal (Top view through package) . . . .29
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

Table 19. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Table 20. Daisy Chain Ordering Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
APPENDIX A. BLOCK ADDRESS TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
M28W320EBT, M28W320EBB
Table 21. Top Boot Block Addresses, M28W320EBT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Table 22. Bottom Boot Block Addresses, M28W320EBB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
APPENDIX B. COMMON FLASH INTERFACE (CFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

Table 23. Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Table 24. CFI Query Identification String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Table 25. CFI Query System Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Table 26. Device Geometry Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Table 27. Primary Algorithm-Specific Extended Query Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Table 28. Security Code Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
APPENDIX C. FLOWCHARTS AND PSEUDO CODES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37

Figure 16. Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Figure 17. Double Word Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . .38
Figure 19. Program Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . .40
Figure 20. Erase Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
Figure 21. Erase Suspend & Resume Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . .42
APPENDIX D. COMMAND INTERFACE AND PROGRAM/ERASE CONTROLLER STATE . . . . . . .43

Table 29. Write State Machine Current/Next. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

Table 30. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
5/45
M28W320EBT, M28W320EBB
SUMMARY DESCRIPTION

The M28W320EB is a 32 Mbit (2 Mbit x 16) non-
volatile Flash memory that can be erased electri-
cally at the block level and programmed in-system
on a Word-by-Word basis. These operations can
be performed using a single low voltage (2.7 to
3.6V) supply. VDDQ allows to drive the I/O pin
down to 1.65V. An optional 12V VPP power supply
is provided to speed up customer programming.
The device features an asymmetrical blocked ar-
chitecture. The M28W320EB has an array of 71
blocks: 8 Parameter Blocks of 4 KWord and 63
Main Blocks of 32 KWord. M28W320EBT has the
Parameter Blocks at the top of the memory ad-
dress space while the M28W320EBB locates the
Parameter Blocks starting from the bottom. The
memory maps are shown in Figure 5, Block Ad-
dresses.
Parameter blocks 0 and 1 can be protected from
accidental programming or erasure. Each block
can be erased separately. Erase can be suspend-
ed in order to perform either read or program in
any other block and then resumed. Program can
be suspended to read data in any other block and
then resumed. Each block can be programmed
and erased over 100,000 cycles.
Program and Erase commands are written to the
Command Interface of the memory. An on-chip
Program/Erase Controller takes care of the tim-
ings necessary for program and erase operations.
The end of a program or erase operation can be
detected and any error conditions identified. The
command set required to control the memory is
consistent with JEDEC standards.
The memory is offered in TSOP48 (10 X 20mm),
and TFBGA47 (6.39 x 6.37mm, 0.75mm pitch)
packages and is supplied with all the bits erased
(set to ’1’).
Figure 2. Logic Diagram
Table 1. Signal Names
M28W320EBT, M28W320EBB
Figure 3. TSOP Connections
7/45
M28W320EBT, M28W320EBB
Figure 4. TFBGA Connections (Top view through package)
M28W320EBT, M28W320EBB
Figure 5. Block Addresses

Note: Also see Appendix A, Tables 21 and 22 for a full listing of the Block Addresses.
9/45
M28W320EBT, M28W320EBB
SIGNAL DESCRIPTIONS

See Figure 2 Logic Diagram and Table 1,Signal
Names, for a brief overview of the signals connect-
ed to this device.
Address Inputs (A0-A20).
The Address Inputs
select the cells in the memory array to access dur-
ing Bus Read operations. During Bus Write opera-
tions they control the commands sent to the
Command Interface of the internal state machine.
Data Input/Output (DQ0-DQ15).
The Data I/O
outputs the data stored at the selected address
during a Bus Read operation or inputs a command
or data to be programmed during a Write Bus op-
eration.
Chip Enable (E).
The Chip Enable input acti-
vates the memory control logic, input buffers, de-
coders and sense amplifiers. When Chip Enable is
at VILand Reset is at VIH the device is in active
mode. When Chip Enable is at VIH the memory is
deselected, the outputs are high impedance and
the power consumption is reduced to the stand-by
level.
Output Enable (G).
The Output Enable controls
data outputs during the Bus Read operation of the
memory.
Write Enable (W).
The Write Enable controls the
Bus Write operation of the memory’s Command
Interface. The data and address inputs are latched
on the rising edge of Chip Enable, E, or Write En-
able, W, whichever occurs first.
Write Protect (WP).
Write Protect is an input to
protect or unprotect the two lockable parameter
blocks. When Write Protect is at VIL, the lockable
blocks are protected and Program or Erase oper-
ations are not possible. When Write Protect is at
VIH, the lockable blocks are unprotected and can
be programmed or erased (refer to Table 5, Mem-
ory Blocks Protection Truth).
Reset (RP).
The Reset input provides a hard-
ware reset of the memory. When Reset is at VIL,
the memory is in reset mode: the outputs are high
impedance and the current consumption is mini-
mized. When Reset is at VIH, the device is in nor-
mal operation. Exiting reset mode the device
enters read array mode, but a negative transition
of Chip Enable or a change of the address is re-
quired to ensure valid data outputs.
VDD Supply Voltage.
VDD provides the power
supply to the internal core of the memory device.
It is the main power supply for all operations
(Read, Program and Erase).
VDDQ Supply Voltage.
VDDQ provides the
power supply to the I/O pins and enables all Out-
puts to be powered independently from VDD. VDDQ
can be tied to VDD or can use a separate supply.
VPP Program Supply Voltage.
VPP is both a
control input and a power supply pin. The two
functions are selected by the voltage range ap-
plied to the pin. The Supply Voltage VDD and the
Program Supply Voltage VPP can be applied in
any order.
If VPP is kept in a low voltage range (0V to 3.6V)
VPP is seen as a control input. In this case a volt-
age lower than VPPLK gives an absolute protection
against program or erase, while VPP > VPP1 en-
ables these functions (see Table 12, DC Charac-
teristics for the relevant values). VPP is only
sampled at the beginning of a Program or Erase;
a change in its value after the operation has start-
ed does not have any effect on Program or Erase,
however for Double or Quadruple Word Program
the results are uncertain.
If VPP is in the range 11.4V to 12.6V it acts as a
power supply pin. In this condition VPP must be
stable until the Program/Erase algorithm is com-
pleted (see Table 14 and 15).
VSS Ground.
VSS is the reference for all voltage
measurements.
Note: Each device in a system should have
VDD,VDDQ and VPP decoupled with a 0.1μF ca-
pacitor close to the pin. See Figure 7, AC Mea-
surement Load Circuit. The PCB trace widths
should be sufficient to carry the required VPP
Program and Erase currents.
M28W320EBT, M28W320EBB
BUS OPERATIONS

There are six standard bus operations that control
the device. These are Bus Read, Bus Write, Out-
put Disable, Standby, Automatic Standby and Re-
set. See Table 2, Bus Operations, for a summary.
Typically glitches of less than 5ns on Chip Enable
or Write Enable are ignored by the memory and do
not affect bus operations.
Read.
Read Bus operations are used to output
the contents of the Memory Array, the Electronic
Signature, the Status Register and the Common
Flash Interface. Both Chip Enable and Output En-
able must be at VIL in order to perform a read op-
eration. The Chip Enable input should be used to
enable the device. Output Enable should be used
to gate data onto the output. The data read de-
pends on the previous command written to the
memory (see Command Interface section). See
Figure 8, Read Mode AC Waveforms, and Table
13, Read AC Characteristics, for details of when
the output becomes valid.
Read mode is the default state of the device when
exiting Reset or after power-up.
Write.
Bus Write operations write Commands to
the memory or latch Input Data to be programmed.
A write operation is initiated when Chip Enable
and Write Enable are at VIL with Output Enable at
VIH. Commands, Input Data and Addresses are
latched on the rising edge of Write Enable or Chip
Enable, whichever occurs first.
See Figures 9 and 10, Write AC Waveforms, and
Tables 14 and 15, Write AC Characteristics, for
details of the timing requirements.
Output Disable.
The data outputs are high im-
pedance when the Output Enable is at VIH.
Standby.
Standby disables most of the internal
circuitry allowing a substantial reduction of the cur-
rent consumption. The memory is in stand-by
when Chip Enable is at VIH and the device is in
read mode. The power consumption is reduced to
the stand-by level and the outputs are set to high
impedance, independently from the Output Enable
or Write Enable inputs. If Chip Enable switches to
VIH during a program or erase operation, the de-
vice enters Standby mode when finished.
Automatic Standby.
Automatic Standby pro-
vides a low power consumption state during Read
mode. Following a read operation, the device en-
ters Automatic Standby after 150ns of bus inactiv-
ity, even if Chip Enable is low, VIL, and the supply
current is reduced to IDD1. The data Inputs/Out-
puts will still output data.
Reset.
During Reset mode, when Output Enable
is low, VIL, the memory is deselected and the out-
puts are high impedance. The memory is in Reset
mode when Reset is at VIL. The power consump-
tion is reduced to the Standby level, independently
from the Chip Enable, Output Enable or Write En-
able inputs. If Reset is pulled to VSS during a Pro-
gram or Erase, this operation is aborted and the
memory content is no longer valid.
Table 2. Bus Operations

Note: X = VIL or VIH, VPPH = 12V ± 5%.
11/45
M28W320EBT, M28W320EBB
COMMAND INTERFACE

All Bus Write operations to the memory are inter-
preted by the Command Interface. Commands
consist of one or more sequential Bus Write oper-
ations. An internal Program/Erase Controller han-
dles all timings and verifies the correct execution
of the Program and Erase commands. The Pro-
gram/Erase Controller provides a Status Register
whose output may be read at any time, to monitor
the progress of an operation, or the Program/
Erase states. See Table 3, Command Codes, for
a summary of the commands and see Appendix D,
Table 29, Write State Machine Current/Next, for a
summary of the Command Interface.
The Command Interface is reset to Read mode
when power is first applied, when exiting from Re-
set or whenever VDD is lower than VLKO. Com-
mand sequences must be followed exactly. Any
invalid combination of commands will reset the de-
vice to Read mode. Refer to Table 4, Commands,
in conjunction with the text descriptions below.
Read Memory Array command

The Read command returns the memory to its
Read mode. One Bus Write cycle is required to is-
sue the Read Memory Array command and return
the memory to Read mode. Subsequent read op-
erations will read the addressed location and out-
put the data. When a device Reset occurs, the
memory defaults to Read mode.
Read Status Register Command

The Status Register indicates when a program or
erase operation is complete and the success or
failure of the operation itself. Issue a Read Status
Register command to read the Status Register’s
contents. Subsequent Bus Read operations read
the Status Register, at any address, until another
command is issued. See Table 8, Status Register
Bits, for details on the definitions of the bits.
The Read Status Register command may be is-
sued at any time, even during a Program/Erase
operation. Any Read attempt during a Program/
Erase operation will automatically output the con-
tent of the Status Register.
Read Electronic Signature Command

The Read Electronic Signature command reads
the Manufacturer and Device Codes.
The Read Electronic Signature command consists
of one write cycle, a subsequent read will output
the Manufacturer or the Device Code depending
on the levels of A0. The Manufacturer Code is out-
put when the address line A0 is at VIL, the Device
Code is output when A0 is at VIH. Addresses A1-
A7 must be kept to VIL, other addresses are ig-
nored. The codes are output on DQ0-DQ7 with
DQ8-DQ15 at 00h. (see Table 5)
Table 3. Command Codes
Read CFI Query Command

The Read Query Command is used to read data
from the Common Flash Interface (CFI) Memory
Area, allowing programming equipment or appli-
cations to automatically match their interface to
the characteristics of the device.
One Bus Write cycle is required to issue the Read
Query Command. Once the command is issued
subsequent Bus Read operations read from the
Common Flash Interface Memory Area. See Ap-
pendix B, Common Flash Interface, Tables 23, 24,
25, 26, 27 and 28 for details on the information
contained in the Common Flash Interface memory
area.
Block Erase Command

The Block Erase command can be used to erase
a block. It sets all the bits within the selected block
to ’1’. All previous data in the block is lost. If the
block is protected then the Erase operation will
abort, the data in the block will not be changed and
the Status Register will output the error.
Two Bus Write cycles are required to issue the
command. The first bus cycle sets up the Erase command. The second latches the block address in the
internal state machine and starts the Program/
Erase Controller.
If the second bus cycle is not Write Erase Confirm
(D0h), Status Register bits b4 and b5 are set and
the command aborts.
M28W320EBT, M28W320EBB
Erase aborts if Reset turns to VIL. As data integrity
cannot be guaranteed when the Erase operation is
aborted, the block must be erased again.
During Erase operations the memory will only ac-
cept the Read Status Register command and the
Program/Erase Suspend command, all other com-
mands will be ignored. Typical Erase times are
given in Table 7, Program, Erase Times and Pro-
gram/Erase Endurance Cycles.
See Appendix C, Figure 20, Erase Flowchart and
Pseudo Code, for the flowchart for using the Erase
command.
Program Command

The memory array can be programmed word-by-
word. Two bus write cycles are required to issue
the Program command. The first bus cycle sets up the Program
command. The second latches the Address and the Data to
be written and starts the Program/Erase
Controller.
During Program operations the memory will only
accept the Read Status Register command and
the Program/Erase Suspend command. All other
commands will be ignored. Typical Program times
are given in Table 7, Program, Erase Times and
Program/Erase Endurance Cycles.
Programming aborts if Reset goes to VIL. As data
integrity cannot be guaranteed when the program
operation is aborted, the block containing the
memory location must be erased and repro-
grammed.
See Appendix C, Figure 16, Program Flowchart
and Pseudo Code, for the flowchart for using the
Program command.
Double Word Program Command

This feature is offered to improve the programming
throughput, writing a page of two adjacent words
in parallel.The two words must differ only for the
address A0. Programming should not be attempt-
ed when VPP is not at VPPH.
Three bus write cycles are necessary to issue the
Double Word Program command. The first bus cycle sets up the Double Word
Program command. The second bus cycle latches the Address and
the Data of the first word to be written. The third bus cycle latches the Address and the
Data of the second word to be written and starts
the Program/Erase Controller.
Read operations output the Status Register con-
tent after the programming has started. Program-
ming aborts if Reset goes to VIL. As data integrity
cannot be guaranteed when the program opera-
tion is aborted, the block containing the memory
location must be erased and reprogrammed.
See Appendix C, Figure 17, Double Word Pro-
gram Flowchart and Pseudo Code, for the flow-
chart for using the Double Word Program
command.
Quadruple Word Program Command

This feature is offered to improve the programming
throughput, writing a page of four adjacent words
in parallel.The four words must differ only for the
addresses A0 and A1. Programming should not be
attempted when VPP is not at VPPH.
Five bus write cycles are necessary to issue the
Quadruple Word Program command. The first bus cycle sets up the Quadruple Word
Program Command. The second bus cycle latches the Address and
the Data of the first word to be written. The third bus cycle latches the Address and the
Data of the second word to be written. The fourth bus cycle latches the Address and
the Data of the third word to be written. The fifth bus cycle latches the Address and the
Data of the fourth word to be written and starts
the Program/Erase Controller.
Read operations output the Status Register con-
tent after the programming has started. Program-
ming aborts if Reset goes to VIL. As data integrity
cannot be guaranteed when the program opera-
tion is aborted, the block containing the memory
location must be erased and reprogrammed.
See Appendix C, Figure 18, Quadruple Word Pro-
gram Flowchart and Pseudo Code, for the flow-
chart for using the Quadruple Word Program
command.
Clear Status Register Command

The Clear Status Register command can be used
to reset bits 1, 3, 4 and 5 in the Status Register to
‘0’. One bus write cycle is required to issue the
Clear Status Register command.
The bits in the Status Register do not automatical-
ly return to ‘0’ when a new Program or Erase com-
mand is issued. The error bits in the Status
Register should be cleared before attempting a
new Program or Erase command.
Program/Erase Suspend Command

The Program/Erase Suspend command is used to
pause a Program or Erase operation. One bus
write cycle is required to issue the Program/Erase
command and pause the Program/Erase control-
ler.
During Program/Erase Suspend the Command In-
terface will accept the Program/Erase Resume,
Read Array, Read Status Register, Read Electron-
ic Signature and Read CFI Query commands. Ad-
13/45
M28W320EBT, M28W320EBB

ditionally, if the suspend operation was Erase then
the Program, Double Word Program and Quadru-
ple Word Program commands will also be accept-
ed. Only the blocks not being erased may be read
or programmed correctly.
During a Program/Erase Suspend, the device can
be placed in a pseudo-standby mode by taking
Chip Enable to VIH. Program/Erase is aborted if
Reset turns to VIL.
See Appendix C, Figure 19, Program Suspend &
Resume Flowchart and Pseudo Code, and Figure
21, Erase Suspend & Resume Flowchart and
Pseudo Code for flowcharts for using the Program/
Erase Suspend command.
Program/Erase Resume Command

The Program/Erase Resume command can be
used to restart the Program/Erase Controller after
a Program/Erase Suspend operation has paused
it. One Bus Write cycle is required to issue the
command. Once the command is issued subse-
quent Bus Read operations read the Status Reg-
ister.
See Appendix C, Figure 19, Program or Double
Word Program Suspend & Resume Flowchart and
Pseudo Code, and Figure 21, Erase Suspend &
Resume Flowchart and Pseudo Code for flow-
charts for using the Program/Erase Resume com-
mand.
Block Protection

Two parameter/lockable blocks (blocks #0 and #1)
can be protected against Program or Erase oper-
ations. Unprotected blocks can be programmed or
erased.
To protect the two lockable blocks set Write Pro-
tect to VIL. When VPP is below VPPLK all blocks are
protected. Any attempt to Program or Erase pro-
tected blocks will abort, the data in the block will
not be changed and the Status Register outputs
the error.
Table 6, Memory Blocks Protection Truth Table,
defines the protection methods.
M28W320EBT, M28W320EBB
Table 4. Commands

Note:1. X = Don’t Care, RA=Read Address, RD=Read Data, SRD=Status Register Data, ID=Identifier (Manufacture and Device Code),
QA=Query Address, QD=Query Data, BA=Block Address, PA=Program Address, PD=Program Data, PRA=Protection Register Ad-
dress, PRD=Protection Register Data. A0=VIL outputs Manufacturer code, A0=VIHoutputs Device code. Address A7-A1 must be VIL. Program Addresses 1 and 2 must be consecutive Addresses differing only for A0. Program Addresses 1,2,3 and 4 must be consecutive Addresses differing only for A0 and A1. 55h is reserved. To be characterized.
Table 5. Read Electronic Signature

Note: RP = VIH.
15/45
M28W320EBT, M28W320EBB
Table 6. Memory Blocks Protection Truth Table

Note:1. X = Don’t Care VPP must also be greater than the Program Voltage Lock Out VPPLK.
Table 7. Program, Erase Times and Program/Erase Endurance Cycles

Note:1. Typical time to program a Main or Parameter Block using the Double Word Program and the Quadruple Word Program commands
respectively.
M28W320EBT, M28W320EBB
STATUS REGISTER

The Status Register provides information on the
current or previous Program or Erase operation.
The various bits convey information and errors on
the operation. To read the Status register the
Read Status Register command can be issued, re-
fer to the Read Status Register Command section.
To output the contents, the Status Register is
latched on the falling edge of the Chip Enable or
Output Enable signals, and can be read until Chip
Enable or Output Enable returns to VIH. Either
Chip Enable or Output Enable must be toggled to
update the latched data.
Bus Read operations from any address always
read the Status Register during Program and
Erase operations.
The bits in the Status Register are summarized in
Table 8, Status Register Bits. Refer to Table 8 in
conjunction with the following text descriptions.
Program/Erase Controller Status (Bit 7).
The Pro-
gram/Erase Controller Status bit indicates whether
the Program/Erase Controller is active or inactive.
When the Program/Erase Controller Status bit is
Low (set to ‘0’), the Program/Erase Controller is
active; when the bit is High (set to ‘1’), the Pro-
gram/Erase Controller is inactive, and the device
is ready to process a new command.
The Program/Erase Controller Status is Low im-
mediately after a Program/Erase Suspend com-
mand is issued until the Program/Erase Controller
pauses. After the Program/Erase Controller paus-
es the bit is High .
During Program, Erase, operations the Program/
Erase Controller Status bit can be polled to find the
end of the operation. Other bits in the Status Reg-
ister should not be tested until the Program/Erase
Controller completes the operation and the bit is
High.
After the Program/Erase Controller completes its
operation the Erase Status, Program Status, VPP
Status and Block Protection Status bits should be
tested for errors.
Erase Suspend Status (Bit 6).
The Erase Sus-
pend Status bit (set to ‘1’) indicates that an Erase
operation has been suspended or is going to be
suspended.
The Erase Suspend Status should only be consid-
ered valid when the Program/Erase Controller Sta-
tus bit is High (Program/Erase Controller inactive).
Bit 7 is set within 30μs of the Program/Erase Sus-
pend command being issued therefore the memo-
ry may still complete the operation rather than
entering the Suspend mode.
When a Program/Erase Resume command is is-
sued the Erase Suspend Status bit returns Low.
Erase Status (Bit 5).
The Erase Status bit can be
used to identify if the memory has failed to verify
that the block has erased correctly. When the
Erase Status bit is High (set to ‘1’), the Program/
Erase Controller has applied the maximum num-
ber of pulses to the block and still failed to verify
that the block has erased correctly. The Erase Sta-
tus bit should be read once the Program/Erase
Controller Status bit is High (Program/Erase Con-
troller inactive).
Once set High, the Erase Status bit can only be re-
set Low by a Clear Status Register command or a
hardware reset. If set High it should be reset be-
fore a new Program or Erase command is issued,
otherwise the new command will appear to fail.
Program Status (Bit 4).
The Program Status bit
is used to identify a Program failure. When the
Program Status bit is High (set to ‘1’), the Pro-
gram/Erase Controller has applied the maximum
number of pulses to the byte and still failed to ver-
ify that it has programmed correctly. The Program
Status bit should be read once the Program/Erase
Controller Status bit is High (Program/Erase Con-
troller inactive).
Once set High, the Program Status bit can only be
reset Low by a Clear Status Register command or
a hardware reset. If set High it should be reset be-
fore a new command is issued, otherwise the new
command will appear to fail.
VPP Status (Bit 3).
The VPP Status bit can be
used to identify an invalid voltage on the VPP pin
during Program and Erase operations. The VPP
pin is only sampled at the beginning of a Program
or Erase operation. Indeterminate results can oc-
cur if VPP becomes invalid during an operation.
When the VPP Status bit is Low (set to ‘0’), the volt-
age on the VPP pin was sampled at a valid voltage;
when the VPP Status bit is High (set to ‘1’), the VPP
pin has a voltage that is below the VPP Lockout
Voltage, VPPLK, the memory is protected and Pro-
gram and Erase operations cannot be performed.
Once set High, the VPP Status bit can only be reset
Low by a Clear Status Register command or a
hardware reset. If set High it should be reset be-
fore a new Program or Erase command is issued,
otherwise the new command will appear to fail.
Program Suspend Status (Bit 2).
The Program
Suspend Status bit (set to ‘1’) indicates that a Pro-
gram operation has been suspended or is going to
be suspended.
The Program Suspend Status should only be con-
sidered valid when the Program/Erase Controller
Status bit is High (Program/Erase Controller inac-
tive). Bit 2 is set within 5μs of the Program/Erase
Suspend command being issued therefore the
memory may still complete the operation rather than entering the Suspend mode.
17/45
M28W320EBT, M28W320EBB

When a Program/Erase Resume command is is-
sued the Program Suspend Status bit returns Low.
Block Protection Status (Bit 1).
The Block Pro-
tection Status bit can be used to identify if a Pro-
gram or Erase operation has tried to modify the
contents of a protected block.
When the Block Protection Status bit is High (set
to ‘1’), a Program or Erase operation has been at-
tempted on a protected block.
Once set High, the Block Protection Status bit can
only be reset Low by a Clear Status Register com-
mand or a hardware reset. If set High it should be
reset before a new command is issued, otherwise
the new command will appear to fail.
Reserved (Bit 0).
Bit 0 of the Status Register is
reserved. Its value must be masked.
Note: Refer to Appendix C, Flowcharts and
Pseudo Codes, for using the Status Register.
Table 8. Status Register Bits

Note: Logic level ’1’ is High, ’0’ is Low.
M28W320EBT, M28W320EBB
MAXIMUM RATING

Stressing the device above the rating listed in the
Absolute Maximum Ratings table may cause per-
manent damage to the device. Exposure to Abso-
lute Maximum Rating conditions for extended
periods may affect device reliability. These are
stress ratings only and operation of the device at
these or any other conditions above those indicat-
ed in the Operating sections of this specification is
not implied. Refer also to the STMicroelectronics
SURE Program and other relevant quality docu-
ments.
Table 9. Absolute Maximum Ratings

Note:1. Depends on range.
19/45
M28W320EBT, M28W320EBB
DC AND AC PARAMETERS

This section summarizes the operating and mea-
surement conditions, and the DC and AC charac-
teristics of the device. The parameters in the DC
and AC characteristics Tables that follow, are de-
rived from tests performed under the Measure-
ment Conditions summarized in Table 10,
Operating and AC Measurement Conditions. De-
signers should check that the operating conditions
in their circuit match the measurement conditions
when relying on the quoted parameters.
Table 10. Operating and AC Measurement Conditions
Figure 6. AC Measurement I/O Waveform Figure 7. AC Measurement Load Circuit
Table 11. Device Capacitance

Note: Sampled only, not 100% tested.
M28W320EBT, M28W320EBB
Table 12. DC Characteristics
21/45
M28W320EBT, M28W320EBB
Figure 8. Read AC Waveforms
Table 13. Read AC Characteristics

Note:1. Sampled only, not 100% tested. G may be delayed by up to tELQV - tGLQV after the falling edge of E without increasing tELQV.
M28W320EBT, M28W320EBB
Figure 9. Write AC Waveforms, Write Enable Controlled
23/45
M28W320EBT, M28W320EBB
Table 14. Write AC Characteristics, Write Enable Controlled

Note:1. Sampled only, not 100% tested. Applicable if VPP is seen as a logic input (VPP < 3.6V).
ic,good price


TEL:86-533-2716050      FAX:86-533-2716790
   

©2020 IC PHOENIX CO.,LIMITED