IC Phoenix
 
Home ›  LL20 > LIS302DL-LIS302DLTR,MEMS motion sensor 3-axis ±2g/±8g smart digital output 'piccolo' accelerometer
LIS302DL-LIS302DLTR Fast Delivery,Good Price
Part Number:
If you need More Quantity or Better Price,Welcom Any inquiry.
We available via phone +865332716050 Email
Partno Mfg Dc Qty AvailableDescript
LIS302DLSTN/a757avaiMEMS motion sensor 3-axis ±2g/±8g smart digital output 'piccolo' accelerometer
LIS302DLTRST N/a10000avaiMEMS motion sensor 3-axis ±2g/±8g smart digital output 'piccolo' accelerometer


LIS302DLTR ,MEMS motion sensor 3-axis ±2g/±8g smart digital output 'piccolo' accelerometerElectrical characteristics (All the parameters are specified @ Vdd=2.5V, T= 25°C unless otherwise n ..
LIS302DLTR8 , MEMS motion sensor 3-axis - ±2g/±8g smart digital output “piccolo” accelerometer
LIS302DLTR8 , MEMS motion sensor 3-axis - ±2g/±8g smart digital output “piccolo” accelerometer
LIS302DLTR8 , MEMS motion sensor 3-axis - ±2g/±8g smart digital output “piccolo” accelerometer
LIS302SGTR , MEMS motion sensor 3-axis - ±2g analog output -piccolo- accelerometer
LIS331DL ,"MEMS motion sensor 3-axisFeatures■ 2.16 V to 3.6 V supply voltage■ 1.8 V compatible IOs■ <1 mW power consumption■ ±2g / ±8g ..
LM3242TMX/NOPB ,6MHz, 750mA Miniature, Adjustable, Step-Down DC-DC Converter with Bypass 9-DSBGA -30 to 90 SNOSB48E–OCTOBER 2011–REVISED AUGUST 20155 Pin Configuration and FunctionsYFQ Package9-Pin DSBGATo ..
LM3243TMX/NOPB ,2.7MHz, 2.5A Step-Down DC-DC Converter with Analog Bypass Mode for 2G/3G/4G PAs 16-DSBGA -30 to 90Features 3 DescriptionThe LM3243 is a DC-DC converter optimized for1• Input Voltage Range: 2.7 V to ..
LM324A ,Quad Operational AmplifierLM124ALM224A - LM324ALOW POWER QUAD OPERATIONAL AMPLIFIERS ■ WIDE GAIN BANDWIDTH : 1.3MHz ■ LA ..
LM324A ,Quad Operational Amplifier
LM324A ,Quad Operational AmplifierABSOLUTE MAXIMUM RATINGS Symbol Parameter LM124A LM224A LM324A UnitVSupply voltage ±16 or 32 ..
LM324A ,Quad Operational AmplifierABSOLUTE MAXIMUM RATINGS Symbol Parameter LM124A LM224A LM324A UnitVSupply voltage ±16 or 32 ..


LIS302DL-LIS302DLTR
MEMS motion sensor 3-axis ±2g/±8g smart digital output 'piccolo' accelerometer
October 2008 Rev 4 1/42
LIS302DL

MEMS motion sensor
3-axis - ± 2g/± 8g smart digital output “piccolo” accelerometer
Feature
2.16 V to 3.6 V supply voltage 1.8 V compatible IOs <1 mW power consumption ± 2g/± 8g dynamically selectable full-scaleI2 C/SPI digital output interface Programmable multiple interrupt generator Click and double click recognition Embedded high pass filter Embedded self test 10000g high shock survivability ECOPACK® RoHS and “Green” compliant
(see Section9)
Description

The LIS302DL is an ultra compact low-power
three axes linear accelerometer. It includes a
sensing element and an IC interface able to
provide the measured acceleration to the external
world through I2 C/SPI serial interface.
The sensing element, capable of detecting the
acceleration, is manufactured using a dedicated
process developed by ST to produce inertial
sensors and actuators in silicon.
The IC interface is manufactured using a CMOS
process that allows to design a dedicated circuit
which is trimmed to better match the sensing
element characteristics.
The LIS302DL has dynamically user selectable
full scales of ± 2g/± 8g and it is capable of
measuring accelerations with an output data rate
of 100 Hz or 400 Hz.
A self-test capability allows the user to check the
functioning of the sensor in the final application.
The device may be configured to generate inertial
wake-up/free-fall interrupt signals when a
programmable acceleration threshold is crossed
at least in one of the three axes. Thresholds and
timing of interrupt generators are programmable
by the end user on the fly.
The LIS302DL is available in plastic Thin Land
Grid Array package (TLGA) and it is guaranteed
to operate over an extended temperature range
from -40 °C to +85 °C.
The LIS302DL belongs to a family of products
suitable for a variety of applications: Free-fall detection Motion activated functions Gaming and virtual reality input devices Vibration monitoring and compensation
Table 1. Device summary
Contents LIS302DL
2/42
Contents Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Mechanical and electrical specifications . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 SPI - Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 I2C - inter IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.1 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.2 Zero-g level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.3 Self test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.4 Click and double click recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1 Sensing element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 IC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Factory calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1 Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1 I2C Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1.1 I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.1 SPI Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2.2 SPI Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2.3 SPI Read in 3-wires mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
LIS302DL Contents
3/42 Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.1 WHO_AM_I (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.2 CTRL_REG1 (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.3 CTRL_REG2 (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.4 CTRL_REG3 [Interrupt CTRL register] (22h) . . . . . . . . . . . . . . . . . . . . . . 28
7.5 HP_FILTER_RESET (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.6 STATUS_REG (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.7 OUT_X (29h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.8 OUT_Y (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.9 OUT_Z (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.10 FF_WU_CFG_1 (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.11 FF_WU_SRC_1 (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.12 FF_WU_THS_1 (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.13 FF_WU_DURATION_1 (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.14 FF_WU_CFG_2 (34h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.15 FF_WU_SRC_2 (35h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.16 FF_WU_THS_2 (36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.17 FF_WU_DURATION_2 (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.18 CLICK_CFG (38h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.19 CLICK_SRC (39h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.20 CLICK_THSY_X (3Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.21 CLICK_THSZ (3Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.22 CLICK_TimeLimit (3Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.23 CLICK_Latency (3Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.24 CLICK_Window (3Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.1 Mechanical characteristics at 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.2 Mechanical characteristics derived from measurement in the -40°C to +85°C
temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.3 Electro-mechanical characteristics at 25°C . . . . . . . . . . . . . . . . . . . . . . . 39
Contents LIS302DL
4/42 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
LIS302DL List of tables
5/42
List of tables

Table 1. Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 3. Mechanical characteristics
(All the parameters are specified @ Vdd=2.5V, T = 25°C unless otherwise noted) . . . . . . 10
Table 4. Electrical characteristics
(All the parameters are specified @ Vdd=2.5V, T= 25°C unless otherwise noted) . . . . . . 11
Table 5. SPI slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 6. I2C slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 7. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 8. Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 9. Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 10. SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 11. Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 12. Transfer when master is writing multiple bytes to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 13. Transfer when Master is receiving (reading) one byte of data from slave . . . . . . . . . . . . . 20
Table 14. ransfer when master is receiving (reading). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 15. Multiple bytes of data from slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 16. Register address map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 17. WHO_AM_I (0Fh) register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 18. CTRL_REG1 (20h) register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 19. CTRL_REG1 (20h) register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 20. CTRL_REG2 (21h) register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 21. CTRL_REG2 (21h) register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 22. High pass filter cut-off frequency configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 23. CTRL_REG3 (22h) register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 24. CTRL_REG3 (22h) register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 25. CTRL_REG3 (22h) truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 26. STATUS_REG (27h) register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 27. STATUS_REG (27h) register desription. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 28. OUT_X (29h) register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 29. OUT_Y (2Bh) register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 30. OUT_Z (2Dh) register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 31. FF_WW_CFG_1 (30h) register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 32. FF_WW_CFG_1(30h) register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 33. FF_WU_SRC_1 (31h) register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 34. FF_WU_SRC_1 (31h) register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 35. FF_WU_THS_1 (32h) register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 36. FF_WU_THS_1 (32h) register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 37. FF_WU_DURATION_1 (33h) register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 38. FF_WU_DURATION_1 (33h) register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 39. FF_WU_CFG_2 (34h) register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 40. FF_WU_CFG_2 (34h) register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 41. FF_WU_SRC_2 (35h) register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 42. FF_WU_SRC_2 (35h) register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 43. FF_WU_THS_2 (36h) register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 44. FF_WU_THS_2 (36h) register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 45. FF_WU_DURATION_2 (37h) register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 46. FF_WU_DURATION_2 (37h) register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
List of tables LIS302DL
6/42
Table 47. CLICK_CFG (38h) register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 48. CLICK_CFG (38h) register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 49. CLICK_CFG (38h) truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 50. CLICK_SRC (39h) register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 51. CLICK_SRC (39h) register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 52. CLICK_THSY_X (3Bh) register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 53. CLICK_THSY_X (3Bh) register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 54. CLICK_THSZ (3Ch) register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 55. CLICK_THSZ (3Ch) register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 56. CLICK_TimeLimit (3Dh) register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 57. CLICK_Latency (3Eh) register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 58. CLICK_Window (3Fh) register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 59. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
LIS302DL List of figures
7/42
List of figures

Figure 1. Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 2. Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 3. SPI slave timing diagram (2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 4. I2C Slave timing diagram (4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 5. LIS302DL electrical connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 6. Read & write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 7. SPI Read protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 8. Multiple bytes SPI Read protocol (2 bytes example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 9. SPI Write protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 10. Multiple bytes SPI Write protocol (2 bytes example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 11. SPI Read protocol in 3-wires mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 12. X axis zero-g level at 2.5V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 13. X axis sensitivity at 2.5V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 14. Y axis zero-g level at 2.5V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 15. Y axis sensitivity at 2.5V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 16. Z axis zero-g level at 2.5V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 17. Z axis sensitivity at 2.5V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 18. X axis zero-g level change vs. temperature at 2.5V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 19. X axis sensitivity change vs. temperature at 2.5V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 20. Y axis zero-g level change vs. temperature at 2.5V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 21. Y axis sensitivity change vs. temperature at 2.5V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 22. Z axis zero-g level change vs. temperature at 2.5V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 23. Z axis sensitivity change vs. temperature at 2.5V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 24. Current consumption in normal mode at 2.5V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 25. Current consumption in power down mode at 2.5V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 26. LGA 14: mechanical data and package dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Block diagram and pin description LIS302DL
8/42 Block diagram and pin description
1.1 Block diagram
Figure 1. Block diagram
1.2 Pin description
Figure 2. Pin connection
LIS302DL Block diagram and pin description
9/42
Table 2. Pin description
Mechanical and electrical specifications LIS302DL
10/42 Mechanical and electrical specifications
2.1 Mechanical characteristics

Table 3. Mechanical characteristics(1)
(All the parameters are specified @ Vdd=2.5 V, T = 25°C unless otherwise noted) The product is factory calibrated at 2.5V. The device can be used from 2.16V to 3.6V Typical specifications are not guaranteed Verified by wafer level test and measurement of initial offset and sensitivity Typical zero-g level offset value after MSL3 preconditioning Offset can be eliminated by enabling the built-in high pass filter If STM bit is used values change in sign for all axes Self Test output changes with the power supply. Vst at 3.3V is typically in the range [-74; -7] LSb for X axis and [7;74] LSb for Y
and Z axes. “Self Test Output Change” is defined as OUTPUT[LSb](Self-test bit on ctrl_reg1=1) -OUTPUT[LSb](Self-test bit on ctrl_reg1=0).
1LSb=4.6g/256 at 8bit representation, ±2.3g Full-Scale Output data reach 99% of final value after 3/ODR when enabling Self-Test mode due to device filtering
10. ODR is output data rate. Refer to Table 4 for specifications
LIS302DL Mechanical and electrical specifications
11/42
2.2 Electrical characteristics

Table 4. Electrical characteristics(1)
(All the parameters are specified @ Vdd=2.5 V, T= 25°C unless otherwise noted) The product is factory calibrated at 2.5V. The device can be used from 2.16V to 3.6V Typical specification are not guaranteed It is possible to remove Vdd maintaining Vdd_IO without blocking the communication busses, in this condition the
measurement chain is powered off. Filter cut-off frequency Time to obtain valid data after exiting Power-Down mode
Mechanical and electrical specifications LIS302DL
12/42
2.3 Communication interface characteristics
2.3.1 SPI - Serial Peripheral Interface

Subject to general operating conditions for Vdd and Top.
Table 5. SPI slave timing values
Figure 3. SPI slave timing diagram (2)
Values are guaranteed at 10MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not
tested in production Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both Input and Output port When no communication is on-going, data on CS, SPC, SDI and SDO are driven by internal pull-up resistors
LIS302DL Mechanical and electrical specifications
13/42
2.3.2 I2 C - inter IC control interface

Subject to general operating conditions for Vdd and Top.
Table 6. I2 C slave timing values
Figure 4. I2 C Slave timing diagram (4)
Data based on standard I2 C protocol requirement, not tested in production A device must internally provide an hold time of at least 300ns for the SDA signal (referred to VIHmin of the SCL signal) to
bridge the undefined region of the falling edge of SCL Cb = total capacitance of one bus line, in pF Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both port
Mechanical and electrical specifications LIS302DL
14/42
2.4 Absolute maximum ratings

Stresses above those listed as “absolute maximum ratings” may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.

Note: Supply voltage on any pin should never exceed 6.0V

2.5 Terminology
2.5.1 Sensitivity

Sensitivity describes the gain of the sensor and can be determined e.g. by applying 1g
acceleration to it. As the sensor can measure DC accelerations this can be done easily by
pointing the axis of interest towards the center of the Earth, noting the output value, rotating
the sensor by 180 degrees (point to the sky) and noting the output value again. By doing so,1g acceleration is applied to the sensor. Subtracting the larger output value from the
smaller one and dividing the result by 2 leads to the actual sensitivity of the sensor. This
value changes very little over temperature and also very little over time. The Sensitivity
Tolerance describes the range of Sensitivities of a large population of sensor.
Table 7. Absolute maximum ratings

This is a mechanical shock sensitive device, improper handling can cause permanent
damages to the part
This is an ESD sensitive device, improper handling can cause permanent damages to
the part
LIS302DL Mechanical and electrical specifications
15/42
2.5.2 Zero-g level

Zero-g level Offset (Off) describes the deviation of an actual output signal from the ideal
output signal if there is no acceleration present. A sensor in a steady state on a horizontal
surface will measure 0g in X axis and 0g in Y axis whereas the Z axis will measure 1g. The
output is ideally in the middle of the dynamic range of the sensor (content of OUT registers
00h, data expressed as 2’s complement number). A deviation from ideal value in this case is
called Zero-g offset. Offset is to some extent a result of stress to a precise MEMS sensor
and therefore the offset can slightly change after mounting the sensor onto a printed circuit
board or exposing it to extensive mechanical stress. Offset changes little over temperature,
see “Zero-g level change vs. temperature”. The Zero-g level of an individual sensor is stable
over lifetime. The Zero-g level tolerance describes the range of Zero-g levels of a population
of sensors.
2.5.3 Self test

Self T est allows to check the sensor functionality without moving it. The Self Test function is
off when the self-test bit of CTRL_REG1 (control register 1) is programmed to ‘0‘. When the
self-test bit of ctrl_reg1 is programmed to ‘1‘ an actuation force is applied to the sensor,
simulating a definite input acceleration. In this case the sensor outputs will exhibit a change
in their DC levels which is related to the selected full scale through the device sensitivity.
When Self Test is activated, the device output level is given by the algebraic sum of the
signals produced by the acceleration acting on the sensor and by the electrostatic test-force.
If the output signals change within the amplitude specified inside Table 3, than the sensor is
working properly and the parameters of the interface chip are within the defined
specification.
2.5.4 Click and double click recognition

The Click and Double Click recognition functions help to create man-machine interface with
little software overload. The device can be configured to output an interrupt signal on
dedicated pin when tapped in any direction.
If the sensor is exposed to a single input stimulus it generates an interrupt request on inertial
interrupt pin (INT1 and/or INT2). A more advanced feature allows to generate and interrupt
request when a “double click” with programmable time between the two events enabling a
“mouse button like” use.
This function can be fully programmed by the user in terms of expected amplitude and
timing of the stimuli.
Functionality LIS302DL
16/42
3 Functionality

The LIS302DL is a ultracompact, low-power, digital output 3-axis linear accelerometer
packaged in a LGA package. The complete device includes a sensing element and an IC
interface able to take the information from the sensing element and to provide a signal to the
external world through an I2 C/SPI serial interface.
3.1 Sensing element

A proprietary process is used to create a surface micro-machined accelerometer. The
technology allows to carry out suspended silicon structures which are attached to the
substrate in a few points called anchors and are free to move in the direction of the sensed
acceleration. To be compatible with the traditional packaging techniques a cap is placed on
top of the sensing element to avoid blocking the moving parts during the moulding phase of
the plastic encapsulation.
When an acceleration is applied to the sensor the proof mass displaces from its nominal
position, causing an imbalance in the capacitive half-bridge. This imbalance is measured
using charge integration in response to a voltage pulse applied to the sense capacitor.
At steady state the nominal value of the capacitors are few pF and when an acceleration is
applied the maximum variation of the capacitive load is in fF range.
3.2 IC interface

The complete measurement chain is composed by a low-noise capacitive amplifier which
converts into an analog voltage the capacitive unbalancing of the MEMS sensor and by
analog-to-digital converters.
The acceleration data may be accessed through an I2 C/SPI interface thus making the
device particularly suitable for direct interfacing with a microcontroller.
The LIS302DL features a Data-Ready signal (RDY) which indicates when a new set of
measured acceleration data is available thus simplifying data synchronization in the digital
system that uses the device.
The LIS302DL may also be configured to generate an inertial Wake-Up and Free-Fall
interrupt signal accordingly to a programmed acceleration event along the enabled axes.
Both Free-Fall and Wake-Up can be available simultaneously on two different pins.
3.3 Factory calibration

The IC interface is factory calibrated for sensitivity (So) and Zero-g level (Off).
The trimming values are stored inside the device by a non volatile memory. Any time the
device is turned on, the trimming parameters are downloaded into the registers to be used
during the normal operation. This allows the user to use the device without further
calibration.
LIS302DL Application hints
17/42
4 Application hints
Figure 5. LIS302DL electrical connection

The device core is supplied through Vdd line while the I/O pads are supplied through
Vdd_IO line. Power supply decoupling capacitors (100 nF ceramic, 10 µF Al) should be
placed as near as possible to the pin 6 of the device (common design practice).
All the voltage and ground supplies must be present at the same time to have proper
behavior of the IC (refer to Figure 5). It is possible to remove Vdd maintaining Vdd_IO
without blocking the communication busses, in this condition the measurement chain is
powered off.
The functionality of the device and the measured acceleration data is selectable and
accessible through the I2 C/SPI interface.When using the I2 C, CS must be tied high.
The functions, the threshold and the timing of the two interrupt pins (INT 1 and INT 2) can be
completely programmed by the user though the I2 C/SPI interface.
4.1 Soldering information

The LGA package is compliant with the ECOPACK®, RoHS and “Green” standard. It is
qualified for soldering heat resistance according to JEDEC J-STD-020C.
Leave “Pin 1 Indicator” unconnected during soldering.
Land pattern and soldering recommendation are available at /mems.
Digital interfaces LIS302DL
18/42
5 Digital interfaces

The registers embedded inside the LIS302DL may be accessed through both the I2 C and
SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire
interface mode.
The serial interfaces are mapped onto the same pads. To select/exploit the I2 C interface, CS
line must be tied high (i.e connected to Vdd_IO).

5.1 I2 C Serial Interface

The LIS302DL I2 C is a bus slave. The I2 C is employed to write the data into the registers
whose content can also be read back.
The relevant I2 C terminology is given in the table below.

There are two signals associated with the I2 C bus: the Serial Clock Line (SCL) and the
Serial DAta line (SDA). The latter is a bidirectional line used for sending and receiving the
data to/from the interface. Both the lines are connected to Vdd_IO through a pull-up resistor
embedded inside the LIS302DL. When the bus is free both the lines are high.
The I2 C interface is compliant with Fast Mode (400 kHz) I2 C standards as well as the
Normal Mode.
Table 8. Serial interface pin description
Table 9. Serial interface pin description
LIS302DL Digital interfaces
19/42
5.1.1 I2 C operation

The transaction on the bus is started through a ST ART (ST) signal. A START condition is
defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After
this has been transmitted by the Master, the bus is considered busy. The next byte of data
transmitted after the start condition contains the address of the slave in the first 7 bits and
the eighth bit tells whether the Master is receiving data from the slave or transmitting data to
the slave. When an address is sent, each device in the system compares the first seven bits
after a start condition with its address. If they match, the device considers itself addressed
by the Master.
The Slave ADdress (SAD) associated to the LIS302DL is 001110xb. SDO pad can be used
to modify less significant bit of the device address. If SDO pad is connected to voltage
supply LSb is ‘1’ (address 0011101b) else if SDO pad is connected to ground LSb value is
‘0’ (address 0011100b). This solution permits to connect and address two different
accelerometer to the same I2 C lines.
Data transfer with acknowledge is mandatory. The transmitter must release the SDA line
during the acknowledge pulse. The receiver must then pull the data line LOW so that it
remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which
has been addressed is obliged to generate an acknowledge after each byte of data has
been received.
The I2 C embedded inside the LIS302DL behaves like a slave device and the following
protocol must be adhered to. After the start condition (ST) a salve address is sent, once a
slave acknowledge (SAK) has been returned, a 8-bit sub-address will be transmitted: the 7
LSb represent the actual register address while the MSB enables address auto increment. If
the MSb of the SUB field is 1, the SUB (register address) will be automatically incremented
to allow multiple data read/write.
The slave address is completed with a Read/Write bit. If the bit was ‘1’ (Read), a repeated
START (SR) condition will have to be issued after the two sub-address bytes; if the bit is ‘0’
(Write) the Master will transmit to the slave with direction unchanged. Table 10 explains how
the SAD+Read/Write bit pattern is composed, listing all the possible configurations.
Table 10. SAD+Read/Write patterns
Table 11. Transfer when master is writing one byte to slave
Table 12. Transfer when master is writing multiple bytes to slave
Digital interfaces LIS302DL
20/42
Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number
of bytes transferred per transfer is unlimited. Data is transferred with the Most Significant bit
(MSb) first. If a receiver can’t receive another complete byte of data until it has performed
some other function, it can hold the clock line, SCL LOW to force the transmitter into a wait
state. Data transfer only continues when the receiver is ready for another byte and releases
the data line. If a slave receiver doesn’t acknowledge the slave address (i.e. it is not able to
receive because it is performing some real time function) the data line must be left HIGH by
the slave. The Master can then abort the transfer. A LOW to HIGH transition on the SDA line
while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be
terminated by the generation of a STOP (SP) condition.
In order to read multiple bytes, it is necessary to assert the most significant bit of the sub-
address field. In other words, SUB(7) must be equal to 1 while SUB(6-0) represents the
address of first register to read.
In the presented communication format MAK is Master Acknowledge and NMAK is No
Master Acknowledge.
5.2 SPI bus interface

The LIS302DL SPI is a bus slave. The SPI allows to write and read the registers of the
device.
The Serial Interface interacts with the outside world with 4 wires: CS, SPC, SDI and SDO.
Table 13. Transfer when Master is receiving (reading) one byte of data from slave
Table 14. ransfer when master is receiving (reading)
Table 15. Multiple bytes of data from slave
LIS302DL Digital interfaces
21/42
Figure 6. Read & write protocol
CS is the Serial Port Enable and it is controlled by the SPI master. It goes low at the start of

the transmission and goes back high at the end. SPC is the Serial Port Clock and it is
controlled by the SPI master. It is stopped high when CS is high (no transmission). SDI and
SDO are respectively the Serial Port Data Input and Output. Those lines are driven at the

falling edge of SPC and should be captured at the rising edge of SPC.
Both the Read Register and Write Register commands are completed in 16 clock pulses or
in multiple of 8 in case of multiple byte read/write. Bit duration is the time between two falling
edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC after the falling edge
of CS while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the
rising edge of CS.
bit 0: RW bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0)

from the device is read. In latter case, the chip will drive SDO at the start of bit 8.
bit 1: MS bit. When 0, the address will remain unchanged in multiple read/write commands.

When 1, the address will be auto incremented in multiple read/write commands.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that will be written into the device (MSb

first).
bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb

first).
In multiple read/write commands further blocks of 8 clock periods will be added. When MS
bit is 0 the address used to read/write data remains the same for every block. When MS bit
is 1 the address used to read/write data is incremented at every block.
The function and the behavior of SDI and SDO remain unchanged.
ic,good price


TEL:86-533-2716050      FAX:86-533-2716790
   

©2020 IC PHOENIX CO.,LIMITED