IC Phoenix
 
Home ›  BB30 > BTA140-600,4Q Triac
BTA140-600 Fast Delivery,Good Price
Part Number:
If you need More Quantity or Better Price,Welcom Any inquiry.
We available via phone +865332716050 Email
Partno Mfg Dc Qty AvailableDescript
BTA140-600 |BTA140600NXPN/a7550avai4Q Triac


BTA140-600 ,4Q TriacApplicationsGeneral purpose motor controls•• General purpose switching4. Quick reference dataTable ..
BTA16-400B ,STANDARD TRIACSFEATURES. HIGH SURGE CURRENT CAPABILITY. COMMUTATION : (dV/dt)c > 10V/μs. BTA Family :INSULATING VO ..
BTA16-600 , Standard Triac
BTA16600B ,16A TRIACSFEATURES:A2Symbol Value UnitGI16 AT(RMS)A1V /V600, 700 and 800 VDRM RRMA2IGT (Q ) 10 to 50 mA1A1A2D ..
BTA16-600B ,16A TRIACSBTA/BTB16 and T16 Series®SNUBBERLESS™ , LOGIC LEVEL & STANDARD 16A TRIACS MAIN
BTA16-600B. ,16A TRIACSFEATURES:A2Symbol Value UnitGI16 AT(RMS)A1V /V600, 700 and 800 VDRM RRMA2IGT (Q ) 10 to 50 mA1A1A2D ..
BZX84-A15 ,Voltage regulator diodes BZX84 seriesVoltage regulator diodesRev. 6 — 6 March 2014 Product data sheet1. Product profile1.1
BZX84-A20 ,Voltage regulator diodesGeneral descriptionLow-power voltage regulator diodes in a small SOT23 (TO-236AB) Surface-Mounted D ..
BZX84-A20 ,Voltage regulator diodesDISCRETE SEMICONDUCTORSDATA SHEETbook, halfpageM3D088BZX84 seriesVoltage regulator diodes1999 May 1 ..
BZX84-A24 ,Voltage regulator diodesFEATURES PINNING• Total power dissipation:PIN DESCRIPTIONmax. 250 mW1 anode• Three tolerance series ..
BZX84-A2V7 ,Voltage regulator diodesDISCRETE SEMICONDUCTORSDATA SHEETbook, halfpageM3D088BZX84 seriesVoltage regulator diodes1999 May 1 ..
BZX84-A2V7 ,Voltage regulator diodes BZX84 seriesVoltage regulator diodesRev. 6 — 6 March 2014 Product data sheet1. Product profile1.1


BTA140-600
4Q Triac
TO-220AB BT A140-600
4Q Triac 12 November 2013 Product data sheet General description

Planar passivated four quadrant triac in a SOT78 (T0-220AB) plastic package intendedfor use in applications requiring high bidirectional transient and blocking voltagecapability and high thermal cycling performance. Features and benefits High blocking voltage capability• High noise immunity• Planar passivated for voltage ruggedness and reliability• Triggering in all four quadrants Applications General purpose motor controls• General purpose switching Quick reference data
Table 1. Quick reference data
Symbol Parameter Conditions Min Typ Max Unit

VDRM repetitive peak off-state voltage - - 600 V
ITSM non-repetitive peak on- full sine wave; Tj(init) = 25 °C;
tp = 20 ms; Fig. 4; Fig. 5 - 190 A
IT(RMS) RMS on-state current full sine wave; Tmb ≤ 91 °C; Fig. 1;
Fig. 2; Fig. 3 - 25 A
Static characteristics

VD = 12 V; IT = 0.1 A; T2+ G+;
Tj = 25 °C; Fig. 7 6 35 mA
VD = 12 V; IT = 0.1 A; T2+ G-;
Tj = 25 °C; Fig. 7 10 35 mA
IGT gate trigger current 11 35 mA
NXP Semiconductors BT A140-600
4Q Triac
Symbol Parameter Conditions Min Typ Max Unit

VD = 12 V; IT = 0.1 A; T2- G+;
Tj = 25 °C; Fig. 7 23 70 mA Pinning information
Table 2. Pinning information
Pin Symbol Description Simplified outline Graphic symbol
T1 main terminal 1 T2 main terminal 2 G gate T2 mounting base; mainterminal 22
TO-220AB (SOT78)

sym051 Ordering information
Table 3. Ordering information
PackageType number
Name Description Version

BTA140-600 TO-220AB plastic single-ended package; heatsink mounted; 1 mountinghole; 3-lead TO-220AB SOT78
NXP Semiconductors BT A140-600
4Q Triac Limiting values
Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol Parameter Conditions Min Max Unit

VDRM repetitive peak off-state voltage - 600 V
IT(RMS) RMS on-state current full sine wave; Tmb ≤ 91 °C; Fig. 1;
Fig. 2; Fig. 3 25 A
full sine wave; Tj(init) = 25 °C;
tp = 20 ms; Fig. 4; Fig. 5 190 AITSM non-repetitive peak on-state
current
full sine wave; Tj(init) = 25 °C;
tp = 16.7 ms 209 A2t I2t for fusing tp = 10 ms; SIN - 180 A2s
IT = 30 A; IG = 0.2 A; dIG/dt = 0.2 A/µs;
T2+ G+ 50 A/µs
IT = 30 A; IG = 0.2 A; dIG/dt = 0.2 A/µs;
T2+ G- 50 A/µs
IT = 30 A; IG = 0.2 A; dIG/dt = 0.2 A/µs;
T2- G- 50 A/µs
dIT/dt rate of rise of on-state current
IT = 30 A; IG = 0.2 A; dIG/dt = 0.2 A/µs;
T2- G+ 10 A/µs
IGM peak gate current - 2 A
PGM peak gate power - 5 W
PG(AV) average gate power over any 20 ms period - 0.5 W
Tstg storage temperature -40 150 °C junction temperature - 125 °C
NXP Semiconductors BT A140-600
4Q Triac

003aad994-2 10-1 1 10surge duration (s)
IT(RMS)
(A)
f = 50 Hz; Tmb = 91 °C
Fig. 1. RMS on-state current as a function of surgeduration; maximum values

003aad995
-50 0 50 100 150Tmb(°C)
IT(RMS)
(A)
Fig. 2. RMS on-state current as a function of mounting
base temperature; maximum values

003aad991 10 20 30IT(RMS)(A)
Ptot
(W) = 180°
120°
90°
60°
30°
conductionangle(degrees)
formfactora60901201802.82.21.91.57
α = conduction angle a = form factor = IT(RMS) / IT(AV)
Fig. 3. Total power dissipation as a function of RMS on-state current; maximum values
NXP Semiconductors BT A140-600
4Q Triac

003aad992
200 10 102 103
number of cycles
ITSM(A)
ITSM
Tj(init) = 25 °C max
1/f
f = 50 Hz
Fig. 4. Non-repetitive peak on-state current as a function of the number of sinusoidal current cycles; maximumvalues

003aad993
10-5 10-4 10-3 10-2 10-1tp(s)
ITSM
(A)
ITSM
Tj(init) = 25 °C max
(1)
(2)
tp ≤ 20 ms
(1) dIT/dt limit
NXP Semiconductors BT A140-600
4Q Triac Thermal characteristics
Table 5. Thermal characteristics
Symbol Parameter Conditions Min Typ Max Unit

full cycle; Fig. 6 - - 1 K/WRth(j-mb) thermal resistance
from junction tomounting base half cycle; Fig. 6 - - 1.4 K/W
Rth(j-a) thermal resistancefrom junction to
ambient
in free air - 60 - K/W
003aad996
Zth(j-mb)
(K/W)
tp (s)10-5 1 1010-110-210-4 10-3
(2)
(1)
(1) Unidirectional (half cycle)
(2) Bidirectional (full cycle)
Fig. 6. Transient thermal impedance from junction to mounting base as a function of pulse width
NXP Semiconductors BT A140-600
4Q Triac Characteristics
Table 6. Characteristics
Symbol Parameter Conditions Min Typ Max Unit
Static characteristics

VD = 12 V; IT = 0.1 A; T2+ G+;
Tj = 25 °C; Fig. 7 6 35 mA
VD = 12 V; IT = 0.1 A; T2+ G-;
Tj = 25 °C; Fig. 7 10 35 mA
VD = 12 V; IT = 0.1 A; T2- G-;
Tj = 25 °C; Fig. 7 11 35 mA
IGT gate trigger current
VD = 12 V; IT = 0.1 A; T2- G+;
Tj = 25 °C; Fig. 7 23 70 mA
VD = 12 V; IG = 0.1 A; T2+ G+;
Tj = 25 °C; Fig. 8 8 40 mA
VD = 12 V; IG = 0.1 A; T2+ G-;
Tj = 25 °C; Fig. 8 30 60 mA
VD = 12 V; IG = 0.1 A; T2- G-;
Tj = 25 °C; Fig. 8 18 40 mA latching current
VD = 12 V; IG = 0.1 A; T2- G+;
Tj = 25 °C; Fig. 8 15 60 mA
VD = 12 V; Tj = 25 °C; T2+; Fig. 9 - 7 60 mAIH holding current
VD = 12 V; Tj = 25 °C; T2-; Fig. 9 - 12 60 mA on-state voltage IT = 30 A; Tj = 25 °C; Fig. 10 - 1.3 1.55 V
VD = 12 V; IT = 0.1 A; Tj = 25 °C;
Fig. 11 0.7 1 VVGT gate trigger voltage
VD = 400 V; IT = 0.1 A; Tj = 125 °C;
Fig. 11
0.25 0.4 - V off-state current VD = 600 V; Tj = 125 °C - 0.1 0.5 mA
Dynamic characteristics

dVD/dt rate of rise of off-state
voltage
VDM = 402 V; Tj = 125 °C; (VDM = 67%
of VDRM); exponential waveform; gate
open circuit
100 300 - V/µs
dVcom/dt rate of change of commutating voltage VD = 400 V; Tj = 95 °C; dIcom/dt = 9 A/
ms; IT = 25 A; gate open circuit 10 - V/µs
tgt gate-controlled turn-ontime ITM = 30 A; VD = 600 V; IG = 0.1 A; dIG/
dt = 5 A/µs 2 - µs
ic,good price


TEL:86-533-2716050      FAX:86-533-2716790
   

©2020 IC PHOENIX CO.,LIMITED