IC Phoenix
 
Home ›  BB29 > BT131W-600,4Q Triac
BT131W-600 Fast Delivery,Good Price
Part Number:
If you need More Quantity or Better Price,Welcom Any inquiry.
We available via phone +865332716050 Email
Partno Mfg Dc Qty AvailableDescript
BT131W-600 |BT131W600NXPN/a180avai4Q Triac


BT131W-600 ,4Q TriacApplications• General purpose low power motor controlGeneral purpose switching and phase control•4. ..
BT132 ,Triacs logic levelGENERAL DESCRIPTION QUICK REFERENCE DATAGlass passivated, sensitive gate SYMBOL PARAMETER MAX. MAX. ..
BT132-600D ,Triacs logic levelPIN CONFIGURATION SYMBOLPIN DESCRIPTION 1 main terminal 2T2 T12 gate3 main terminal 1G32 1
BT132-600D ,Triacs logic levelapplications. These devices I RMS on-state current 1 1 AT(RMS)are intended to be interfaced directl ..
BT134 ,Triacs sensitive gateGENERAL DESCRIPTION QUICK REFERENCE DATAGlass passivated triacs in a plastic SYMBOL PARAMETER MAX. ..
BT134 ,Triacs sensitive gateapplications requiring high BT134- 500 600 800bidirectional transient and blocking BT134- 500F 600F ..
BZV55-B11 ,Voltage regulator diodesThermal characteristics Table 6.
BZV55-B12 ,Voltage regulator diodesLimiting valuesIn accordance with the Absolute Maximum Rating System (IEC 60134).Symbol Parameter C ..
BZV55-B13 ,ZENER DIODESLimiting values Table 5.
BZV55-B13 ,ZENER DIODESLIMITING VALUESIn accordance with the Absolute Maximum Rating System (IEC 134).SYMBOL PARAMETER CON ..
BZV55-B15 ,ZENER DIODESFEATURES DESCRIPTION• Total power dissipation: Low-power voltage regulator diodes in small hermetic ..
BZV55-B16 ,ZENER DIODESApplications General regulation functions1.4 Quick reference data Table 1. Quick reference dataSym ..


BT131W-600
4Q Triac
BT131W-6004Q Triac 21 November 2013 Product data sheet General description
Planar passivated four quadrant triac in a SOT223 surface-mountable plastic packageintended for use in applications requiring high bidirectional transient and blocking voltagecapability and high thermal cycling performance. Features and benefits High blocking voltage capability• Planar passivated for voltage ruggedness and reliability• Surface-mountable package• Triggering in all four quadrants• Very sensitive gate Applications General purpose low power motor control• General purpose switching and phase control Quick reference data
Table 1. Quick reference data
Symbol Parameter Conditions Min Typ Max Unit

VDRM repetitive peak off-
state voltage - 600 V
ITSM non-repetitive peak on-
state current
full sine wave; Tj(init) = 25 °C;
tp = 20 ms; Fig. 4; Fig. 5 - 12.5 A
IT(RMS) RMS on-state current full sine wave; Tsp ≤ 110 °C; Fig. 1;
Fig. 2; Fig. 3 - 1 A
Static characteristics

VD = 12 V; IT = 0.1 A; T2+ G+; 0.4 3 mA
VD = 12 V; IT = 0.1 A; T2+ G-;
Tj = 25 °C; Fig. 7 1.3 3 mA
IGT gate trigger current
VD = 12 V; IT = 0.1 A; T2- G-; 1.4 3 mA
NXP Semiconductors BT131W-600
4Q Triac
Symbol Parameter Conditions Min Typ Max Unit

VD = 12 V; IT = 0.1 A; T2- G+;
Tj = 25 °C; Fig. 7 3.8 7 mA Pinning information
Table 2. Pinning information
Pin Symbol Description Simplified outline Graphic symbol
T1 main terminal 1 T2 main terminal 2 G gate T2 mainterminal 2 32
SC-73 (SOT223)

sym051 Ordering information
Table 3. Ordering information
PackageType number
Name Description Version

BT131W-600 SC-73 plastic surface-mounted package with increased heatsink; 4
leads
SOT223
NXP Semiconductors BT131W-600
4Q Triac Limiting values
Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol Parameter Conditions Min Max Unit

VDRM repetitive peak off-state voltage - 600 V
IT(RMS) RMS on-state current full sine wave; Tsp ≤ 110 °C; Fig. 1;
Fig. 2; Fig. 3 1 A
full sine wave; Tj(init) = 25 °C;
tp = 20 ms; Fig. 4; Fig. 5 12.5 AITSM non-repetitive peak on-state
current
full sine wave; Tj(init) = 25 °C;
tp = 16.7 ms 13.8 A2t I2t for fusing tp = 10 ms; SIN - 0.78 A2s
IT = 1.5 A; IG = 0.2 A; dIG/dt = 0.2 A/µs;
T2+ G+ 50 A/µs
IT = 1.5 A; IG = 0.2 A; dIG/dt = 0.2 A/µs;
T2+ G- 50 A/µs
IT = 1.5 A; IG = 0.2 A; dIG/dt = 0.2 A/µs;
T2- G- 50 A/µs
dIT/dt rate of rise of on-state current
IT = 1.5 A; IG = 0.2 A; dIG/dt = 0.2 A/µs;
T2- G+ 10 A/µs
IGM peak gate current - 2 A
PGM peak gate power - 5 W
PG(AV) average gate power over any 20 ms period - 0.5 W
Tstg storage temperature -40 150 °C junction temperature - 125 °C
NXP Semiconductors BT131W-600
4Q Triac

aaa- 010140
IT(RMS)
(A)
surge duration (s)
10-2 10110-1
f = 50 Hz; Tsp = 110 °C
Fig. 1. RMS on-state current as a function of surgeduration; maximum values

aaa- 010141
-50 0 50 100 150
Tsp(°C)
IT(RMS)
(A)
110°C
Fig. 2. RMS on-state current as a function of solderpoint temperature; maximum values

aaa-010139
1.2 0.2 0.4 0.6 0.8 1 1.2IT(RMS) (A)
Ptot
(W)
Tsp(max)
(°C)
119°°°
120°
# = 180°#
α = conduction angle a = form factor = IT(RMS) / IT(AV)
Fig. 3. Total power dissipation as a function of RMS on-state current; maximum values
NXP Semiconductors BT131W-600
4Q Triac

003aab041
ITSM
(A) 10310210
ITSM=25°C max
f = 50 Hz
Fig. 4. Non-repetitive peak on-state current as a function of the number of sinusoidal current cycles; maximumvalues

003aab040(s)
10-5 10-110-210-4 10-3
ITSM
(A)
(1)
(2)
ITSM=25°C max
tp ≤ 20 ms
(1) dIT/dt limit
NXP Semiconductors BT131W-600
4Q Triac Thermal characteristics
Table 5. Thermal characteristics
Symbol Parameter Conditions Min Typ Max Unit

Rth(j-sp) thermal resistance
from junction to solderpoint
full cycle; Fig. 6 - - 15 K/W
full cycle; for minimum footprint - 156 - K/WRth(j-a) thermal resistancefrom junction to
ambient full cycle; for pad area - 70 - K/W
003aak513
Zth(j-sp)
(K/W)
tp (s)-5 1 1010-110-210-4 10-3
(2)
(1)
(1) Unidirectional (half cycle)
(2) Bidirectional (full cycle)
Fig. 6. Transient thermal impedance from junction to solder point as a function of pulse width
NXP Semiconductors BT131W-600
4Q Triac Characteristics
Table 6. Characteristics
Symbol Parameter Conditions Min Typ Max Unit
Static characteristics

VD = 12 V; IT = 0.1 A; T2+ G+;
Tj = 25 °C; Fig. 7 0.4 3 mA
VD = 12 V; IT = 0.1 A; T2+ G-;
Tj = 25 °C; Fig. 7 1.3 3 mA
VD = 12 V; IT = 0.1 A; T2- G-;
Tj = 25 °C; Fig. 7 1.4 3 mA
IGT gate trigger current
VD = 12 V; IT = 0.1 A; T2- G+;
Tj = 25 °C; Fig. 7 3.8 7 mA
VD = 12 V; IG = 0.1 A; T2+ G+;
Tj = 25 °C; Fig. 8 1.2 5 mA
VD = 12 V; IG = 0.1 A; T2+ G-;
Tj = 25 °C; Fig. 8 4 8 mA
VD = 12 V; IG = 0.1 A; T2- G-;
Tj = 25 °C; Fig. 8 1 5 mA latching current
VD = 12 V; IG = 0.1 A; T2- G+;
Tj = 25 °C; Fig. 8 2.5 8 mA holding current VD = 12 V; Tj = 25 °C; Fig. 9 - 1.3 5 mA on-state voltage IT = 1.4 A; Tj = 25 °C; Fig. 10 - 1.2 1.5 V
VD = 12 V; IT = 0.1 A; Tj = 25 °C;
Fig. 11 0.7 1 VVGT gate trigger voltage
VD = 400 V; IT = 0.1 A; Tj = 125 °C;
Fig. 11
0.2 0.3 - V off-state current VD = 600 V; Tj = 125 °C - 0.1 0.5 mA
Dynamic characteristics

dVD/dt rate of rise of off-state
voltage
VDM = 402 V; Tj = 125 °C; RGT1 = 1 kΩ;
(VDM = 67% of VDRM); exponential
waveform; Fig. 12 20 - V/µs
dVcom/dt rate of change of commutating voltage VD = 400 V; Tj = 125 °C; dIcom/
dt = 0.5 A/ms; IT = 1 A; gate open
circuit - - V/µs
tgt gate-controlled turn-on
time
ITM = 1.5 A; VD = 600 V; IG = 0.1 A; dIG/
dt = 5 A/µs 2 - µs
ic,good price


TEL:86-533-2716050      FAX:86-533-2716790
   

©2020 IC PHOENIX CO.,LIMITED