IC Phoenix
 
Home ›  7722 > 74LVC14ABQ,74LVC14A; Hex inverting Schmitt-trigger with 5 V tolerant input
74LVC14ABQ Fast Delivery,Good Price
Part Number:
If you need More Quantity or Better Price,Welcom Any inquiry.
We available via phone +865332716050 Email
Partno Mfg Dc Qty AvailableDescript
74LVC14ABQPHILIPSN/a4534avai74LVC14A; Hex inverting Schmitt-trigger with 5 V tolerant input
74LVC14ABQPHIN/a33000avai74LVC14A; Hex inverting Schmitt-trigger with 5 V tolerant input


74LVC14ABQ ,74LVC14A; Hex inverting Schmitt-trigger with 5 V tolerant inputApplications■ Wave and pulse shapers for highly noisy environments■ Astable multivibrators■ Monosta ..
74LVC14ABQ ,74LVC14A; Hex inverting Schmitt-trigger with 5 V tolerant inputGeneral descriptionThe 74LVC14A is a high-performance, low-power, low-voltage, Si-gate CMOS device ..
74LVC14AD ,Hex inverting Schmitt trigger with 5 V tolerant inputPIN CONFIGURATION PIN DESCRIPTIONPIN NUMBER SYMBOL NAME AND FUNCTION1A 1 14 VCC1, 3, 5, 9, 11, 13 1 ..
74LVC14ADB ,Hex inverting Schmitt trigger with 5 V tolerant inputINTEGRATED CIRCUITS74LVC14AHex inverting Schmitt-trigger with 5Vtolerant inputProduct specification ..
74LVC14AM ,LOW VOLTAGE CMOS HEX INVERTER HIGH PERFORMANCEAbsolute Maximum Ratings are those values beyond which damage to the device may occur. Functional o ..
74LVC14APW ,Hex inverting Schmitt-trigger with 5V tolerant inputPin configuration SO14, SSOP14 and Fig 5.
8080A , 8-Bit Microprocessor
8085AH-2 , 8-Bit HMOS MICROPROCESSORS 3MHz, 5 MHz and 6 MHz Selections Avallable
80C186 , CMOS High-Integration 16-Bit Microprocessors
80C186 , CMOS High-Integration 16-Bit Microprocessors
80C187 , 80-BIT MATH COPROCESSOR
80C196KB , COMMERCIAL/EXPRESS CHMOS MICROCONTROLLER


74LVC14ABQ
74LVC14A; Hex inverting Schmitt-trigger with 5 V tolerant input
General descriptionThe 74LVC14Aisa high-performance, low-power, low-voltage, Si-gate CMOS device and
superior to most advanced CMOS compatible TTL families.
Inputs can be driven from either 3.3 V or 5 V devices. This feature allows the use of this
device as a translator in a mixed 3.3 V and 5 V environment.
The 74LVC14A provides six inverting buffers with Schmitt-trigger action. It is capable of
transforming slowly changing input signals into sharply defined, jitter-free output signals. Features Wide supply voltage range from 1.2 V to 3.6V5 V tolerant input for interfacing with 5 V logic CMOS low-power consumption Direct interface with TTL levels Inputs accept voltages up to 5.5V Unlimited input rise and fall times Complies with JEDEC standard: JESD8-B/JESD36 (2.7 V to 3.6V) ESD protection: HBM EIA/JESD22-A114-B exceeds 2000V MM EIA/JESD22-A115-A exceeds 200V Multiple package options Specified from −40 °C to +85 °C and from −40 °C to +125°C Applications Wave and pulse shapers for highly noisy environments Astable multivibrators Monostable multivibrators
74L VC14A
Hex inverting Schmitt trigger with 5 V tolerant input
Philips Semiconductors 74L VC14A Quick reference data
[1] CPD is used to determine the dynamic power dissipation (PD in μW).
PD = CPD × VCC2× fi × N + Σ(CL × VCC2 × fo) where:
fi = input frequency in MHz;
fo = output frequency in MHz;
CL = output load capacitance in pF;
VCC = supply voltage in V;
N = number of inputs switching;
Σ(CL × VCC2 × fo) = sum of the outputs.
[2] The condition is VI = GND to VCC. Ordering information
Table 1: Quick reference data

tPHL,
tPLH
propagation delay nA to
VCC = 3.3 V; CL = 50 pF - 3.2 - ns input capacitance - 4.0 - pF
CPD power dissipation
capacitance
VCC = 3.3V [1][2] -10 - pF
Table 2: Ordering information

74LVC14AD −40 °C to +125°C SO14 plastic small outline package; 14 leads;
body width 3.9 mm
SOT108-1
74LVC14ADB −40 °C to +125°C SSOP14 plastic thin shrink small outline package; 14 leads;
body width 5.3 mm
SOT337-1
74LVC14APW −40 °C to +125°C TSSOP14 plastic thin shrink small outline package; 14 leads;
body width 4.4 mm
SOT402-1
74LVC14ABQ −40 °C to +125°C DHVQFN14 plastic dual in-line compatible thermal enhanced very thin
quad flat package; no leads;14 terminals;
body 2.5×3× 0.85 mm
SOT762-1
Philips Semiconductors 74L VC14A Functional diagram
Philips Semiconductors 74L VC14A Pinning information
7.1 Pinning
7.2 Pin description
Table 3: Pin description
1 1 data input A 2 1 data output Y 3 2 data input A 4 2 data output Y 5 3 data input A 6 3 data output Y
GND 7 ground (0V) 8 4 data output Y 9 4 data input A 10 5 data output Y 11 5 data input A 12 6 data output Y 13 6 data input A
VCC 14 supply voltage
Philips Semiconductors 74L VC14A Functional description
8.1 Function table

[1] H = HIGH voltage level;
L = LOW voltage level. Limiting values
[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
[2] When VCC = 0 V (Power-down mode), the output voltage can be 3.6 V in normal operation.
[3] For SO14 packages: Ptot derates linearly with 8 mW/K above 70°C.
For (T)SSOP14 packages: Ptot derates linearly with 5.5 mW/K above 60°C.
For DHVQFN14 packages: Ptot derates linearly with 4.5 mW/K above 60°C.
Table 4: Function table[1]

Table 5: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to
GND (ground =0V).
VCC supply voltage −0.5 +6.5 V input voltage [1] −0.5 +6.5 V output voltage [1] −0.5 VCC + 0.5V
IIK input diode current VI < 0V - −50 mA
IOK output diode current VO > VCC or VO < 0V - ±50 mA output source or sink
current
VO = 0 V to VCC - ±50 mA
ICC,
IGND
VCC or GND current - ±100 mA
Tstg storage temperature −65 +150 °C
Ptot total power dissipation Tamb = −40 °C to +125°C [3]- 500 mW
Philips Semiconductors 74L VC14A
10. Recommended operating conditions
11. Static characteristics
Table 6: Recommended operating conditions

VCC supply voltage for maximum speed
performance
2.7 - 3.6 V
for low-voltage
applications
1.2 - 3.6 V input voltage 0 - 5.5 V output voltage 0 - VCC V
Tamb ambient temperature −40 - +125 °C
Table 7: Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0V).
Tamb =
−40 °C to +85°C[1]
VOH HIGH-level output voltage VI = VIH or VIL= −100 μA; VCC = 2.7 V to 3.6V VCC − 0.2 - - V=−8 mA; VCC = 2.3 V to 2.7V VCC − 0.5 - - V
IO = −12 mA; VCC = 2.7V VCC − 0.5 - - V
IO = −18 mA; VCC = 3.0V VCC − 0.6 - - V
IO = −24 mA; VCC = 3.0V VCC − 0.8 - - V
VOL LOW-level voltage output VI = VIH or VIL= 100 μA; VCC = 2.7 V to 3.6V - - 0.2 V=8 mA; VCC = 2.3 V to 2.7V - - 0.6 V
IO = 12 mA; VCC = 2.7V - - 0.4 V
IO = 24 mA; VCC = 3.0V - - 0.55 V
ILI input leakage current VCC = 3.6 V; VI = 5.5 V or GND - ±0.1 ±5 μA
ICC quiescent supply current VCC= 3.6V;VI =VCCor GND;IO=0A - 0.1 10 μA
ΔICC additional quiescent supply
current per input pin
VCC= 2.7Vto 3.6V;VI =VCC− 0.6V;
IO = 0A 5 500 μA input capacitance - 4.0 - pF
Tamb =
−40 °C to +125°C
VOH HIGH-level output voltage VI = VIH or VIL= −100 μA; VCC = 2.7 V to 3.6V VCC − 0.3 - - V=−8 mA; VCC = 2.3 V to 2.7V VCC − 0.65- - V
IO = −12 mA; VCC = 2.7V VCC − 0.65- - V
IO = −18 mA; VCC = 3.0V VCC − 0.75- - V
IO = −24 mA; VCC = 3.0V VCC − 1 --V
Philips Semiconductors 74L VC14A
[1] All typical values are measured at Tamb = 25°C.
12. Dynamic characteristics

[1] All typical values are measured at nominal VCC and Tamb = 25°C.
[2] Skew between any two outputs of the same package switching in the same direction. This parameter is guaranteed by design.
[3] CPD is used to determine the dynamic power dissipation (PD in μW).
PD = CPD × VCC2× fi × N + Σ(CL × VCC2 × fo) where:
fi = input frequency in MHz;
fo = output frequency in MHz;
CL = output load capacitance in pF;
VCC = supply voltage in V;
N = number of inputs switching;
Σ(CL × VCC2 × fo) = sum of the outputs.
[4] The condition is VI = GND to VCC.
VOL LOW-level voltage output VI = VIH or VIL= 100 μA; VCC = 2.7 V to 3.6V - - 0.3 V=8 mA; VCC = 2.3 V to 2.7V - - 0.75 V
IO = 12 mA; VCC = 2.7V - - 0.6 V
IO = 24 mA; VCC = 3.0V - - 0.8 V
ILI input leakage current VCC = 3.6 V; VI = 5.5 V or GND - - ±20 μA
ICC quiescent supply current VCC= 3.6V;VI =VCCor GND;IO =0A - - 40 μA
ΔICC additional quiescent supply
current per input pin
VCC= 2.7Vto 3.6V;VI =VCC− 0.6V;
IO = 0A 5 mA
Table 7: Static characteristics …continued

At recommended operating conditions; voltages are referenced to GND (ground = 0V).
Table 8: Dynamic characteristics

Voltages are referenced to GND (ground =0 V); for test circuit see Figure7.
Tamb =
−40 °C to +85°C[1]
tPHL,
tPLH
propagation delay nA to nY see Figure6
VCC = 1.2V - 16 - ns
VCC = 2.3 V to 2.7V 1.5 4.0 7.8 ns
VCC = 2.7V 1.5 3.6 7.5 ns
VCC = 3.0 V to 3.6V 1.0 3.2 6.4 ns
tsk(0) skew [2]- - 1.0 ns
CPD power dissipation capacitance VCC = 3.3V [3][4] -10 - pF
Tamb =
−40 °C to +125°C
tPHL,
tPLH
propagation delay nA to nY see Figure6
VCC = 1.2V ---ns
VCC = 2.3 V to 2.7V 1.5 - 10.0 ns
VCC = 2.7V 1.5 - 9.5 ns
VCC = 3.0 V to 3.6V 1.0 - 8.0 ns
tsk(0) skew [2]- - 1.5 ns
Philips Semiconductors 74L VC14A
13. Waveforms
Table 9: Measurement points

1.2V 0.5 × VCC 0.5 × VCC
2.3 V to 2.7V 0.5 × VCC 0.5 × VCC
2.7V 1.5V 1.5V
3.0 V to 3.6V 1.5V 1.5V
Philips Semiconductors 74L VC14A
Table 10: Test data

1.2V VCC ≤ 2.5 ns 30pF 500Ω open
2.3 V to 2.7V VCC ≤ 2.5 ns 30pF 500Ω open
2.7V 2.7V ≤ 2.5 ns 50pF 500Ω open
3.0 V to 3.6V 2.7V ≤ 2.5 ns 50pF 500Ω open
Philips Semiconductors 74L VC14A
14. Transfer characteristics

[1] All typical values are measured at nominal VCC and Tamb = 25°C.
[2] Typical transfer characteristic is displayed in Figure9.
Table 11: Transfer characteristics

The VIH and VIL from the family static characteristics are superseded by the VT+ and VT−.
Voltages are referenced to GND (ground = 0 V); see Figure8.
Tamb =
−40 °C to +85°C[1]
VT+ positive-going threshold VCC = 1.2V - - 1.2 V
VCC = 2.5V 0.9 - 1.7 V
VCC = 2.7V 1.1 - 2.0 V
VCC = 2.7 V to 3.6V 1.1 - 2.0 V
VT− negative-going threshold VCC = 1.2V 0 - - V
VCC = 2.5V 0.4 - 1.2 V
VCC = 2.7V 0.8 - 1.5 V
VCC = 2.7 V to 3.6V 0.8 - 1.5 V hysteresis (VT+ − VT−)VCC = 1.2V - - - V
VCC = 2.5V 0.3 - - V
VCC = 2.7V 0.3 0.4 - V
VCC = 2.7 V to 3.6V [2] 0.3 0.45 - V
Tamb =
−40 °C to +125°C
VT+ positive-going threshold VCC = 1.2V - - 1.2 V
VCC = 2.5V 0.9 - 1.7 V
VCC = 2.7V 1.1 - 2.0 V
VCC = 2.7 V to 3.6V 1.1 - 2.0 V
VT− negative-going threshold VCC = 1.2V 0 - - V
VCC = 2.5V 0.4 - 1.2 V
VCC = 2.7V 0.8 - 1.5 V
VCC = 2.7 V to 3.6V 0.8 - 1.5 V hysteresis (VT+ − VT−)VCC = 1.2V - - - V
VCC = 2.5V 0.2 - - V
VCC = 2.7V 0.3 - - V
VCC = 2.7 V to 3.6V 0.3 - - V
ic,good price


TEL:86-533-2716050      FAX:86-533-2716790
   

©2020 IC PHOENIX CO.,LIMITED